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Abstract

Hierarchical centering has been described as a reparameterisation method applicable to random

effects models. It has been shown to improve mixing of models in the context of Markov chain

Monte Carlo (MCMC) methods. A hierarchical centering approach is proposed for reversible

jump MCMC (RJMCMC) chains which builds upon the hierarchical centering methods for MCMC

chains and uses them to reparameterize models in an RJMCMC algorithm. Although these meth-

ods may be applicable to models with other error distributions, the case is described for a log-linear

Poisson model where the expected value λ includes fixed effect covariates and a random effect for

which normality is assumed with a zero-mean and unknown standard deviation. For the proposed

RJMCMC algorithm including hierarchical centering, the models are reparameterized by mod-

elling the mean of the random effect coefficients as a function of the intercept of the λ model and

one or more of the available fixed effect covariates depending on the model. The method is appro-

priate when fixed-effect covariates are constant within random effect groups. This has an effect on

the dynamics of the RJMCMC algorithm and improves model mixing. The methods are applied to

a case study of point transects of indigo buntings where, without hierarchical centering, the RJM-

1The data and R code for the case study are provided in the annexes of the electronic version of this manuscript.
2* cso2@st-andrews.ac.uk
3* http://creem2.st-andrews.ac.uk/
4* http://coedekoven.wix.com/cornelia-oedekoven
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CMC algorithm had poor mixing and the estimated posterior distribution depended on the starting

model. With hierarchical centering on the other hand, the chain moved freely over model and pa-

rameter space. These results are confirmed with a simulation study. Hence, the proposed methods

should be considered as a regular strategy for implementing models with random effects in RJM-

CMC algorithms; they facilitate convergence of these algorithms and help avoid false inference on

model parameters.

Keywords: combined likelihood, “Metropolis Hastings”, point transect sampling, random effects,

reparameterisation.

1. Introduction1

For Bayesian analyses, for a given model, the posterior distribution of the parameters is formed2

by combining the likelihood of the data with the prior distributions of the parameters. A Markov3

chain Monte Carlo (MCMC) algorithm is often used to sample from this posterior distribution4

to obtain inference on the parameters of interest. In the presence of model uncertainty, the pos-5

terior distribution can be extended to be defined jointly over both parameter and model space.6

This posterior distribution is often explored using the reversible jump Markov chain Monte Carlo7

(RJMCMC) algorithm (Green, 1995). However, the art of setting up an RJMCMC algorithm can8

be challenging on multiple levels. The objective is generally to construct a chain that moves freely9

between models, efficiently exploring model and parameter space simultaneously.10

The RJMCMC algorithm entails iteratively updating the parameters conditional on the model11

(i.e. within-model move) and then updating the model (and corresponding model parameters) con-12

ditional on the current parameters (i.e. between-model move). Mixing problems for the within-13

model moves are often due to high autocorrelation within the constructed Markov chain. Improve-14

ments for mixing within a given model have been investigated in the framework of MCMC with15

the aim of reducing posterior correlations and increasing the effective sample size by reparame-16

terisation. In this context, Browne (2004) and Browne et al. (2009) have shown that hierarchical17

centering (first described by Gelfand, Sahu, and Carlin, 1995) can significantly reduce the autocor-18

relation within the MCMC algorithm. The use of hierarchical centering in the presence of random19

effects refers to exchanging the zero-mean of the random effect component, typically assumed to20

be of normal form, with a model consisting of an intercept and one or more fixed effect covariates.21

2



This will be described in detail in section 2. Papaspiliopoulos, Roberts, and Sköld (2007) investi-22

gated the circumstances when hierarchical centering performs well in comparison to noncentering23

for MCMC algorithms.24

Other methods for improving mixing of an MCMC algorithm include parameter expansion,25

which refers to augmenting the model with additional parameters to form an expanded model26

(Browne, 2004). The original model is embedded in the expanded one and parameters from the27

original model can be constructed with parameters from the expanded model. Vines, Gilks, and28

Wild (1995) describe a method of reparameterisation for random effects models called sweeping29

which is suitable also for models with multiple sets of random effects in a generalized linear mixed30

model (glmm) framework. The idea consists of adding the mean of the random effect coefficients31

to the intercept of the fixed effects while subtracting the same quantity from each random effect32

coefficient.33

For the between-model move in an RJMCMC algorithm (the RJ step), the current model is34

updated by proposing to move to an alternative model (with given parameters) and accepting this35

move with some probability. Mixing problems for these between-model moves may arise for mul-36

tiple reasons, e.g. due to difficulties in finding proposal distributions and updating procedures that37

produce suitable acceptance probabilities. Besides careful pilot-tuning of proposal distributions,38

several methods for improving the acceptance rate for the reversible jump step have been proposed.39

For example, Green and Mira (2001) proposed delayed rejection, where after initial rejection a sec-40

ond attempt to jump is made with samples generated from a new distribution that may depend on41

the rejected proposal. Brooks, Giudici, and Roberts (2003) assumed a family for the proposal dis-42

tribution, where the proposal parameters are chosen to maximize (in some form) the acceptance43

probability. Al-Awadhi, Hurn, and Jennison (2004) demonstrated that increasing acceptance prob-44

abilities may be achieved by using a secondary Markov chain with a fixed number of steps that45

serves to move the value of an RJMCMC proposal closer to a mode before calculating the accep-46

tance probability for the proposed move. Papathomas, Dellaportas, and Vasdekis (2011) proposed47

that model mixing for generalized linear models may be improved by using proposal densities that48

draw samples from parameter subspaces of competing models. Forster, Gill, and Overstall (2012)49

used the Laplace approximation to integrate out the random effects and orthogonal projections of50

the current linear predictor onto the proposed linear predictor to produce effective proposals for51
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glmms.52

While these previous approaches describe strategies to improve the acceptance rate for RJ steps53

in general, they can be quite complex to implement. We propose an approach using hierarchical54

centering that is relatively straightforward to implement for random/mixed effect models. A par-55

ticular problem that one may encounter with random effect models is that the random effect coeffi-56

cients may begin absorbing the effect of one or more fixed effect covariates if these are not present57

in the model at times during the Markov chain. The inclusion of such effects into the model may58

then be unlikely as they are already accounted for within the random effects. We will demonstrate59

below that using hierarchical centering provides a simple way of reparameterising the model that60

will prevent this problem and improve the between-model mixing.61

Hierarchical centering was initially described by Gelfand, Sahu, and Carlin (1995) as a method62

to improve convergence for mixed models using MCMC methods. Here we extend the ideas to im-63

prove mixing in an RJMCMC algorithm. Although our methods may be applicable to models with64

other error distributions, we consider the case for a log-linear Poisson model with fixed effects and65

a normally distributed random effect, where the overall likelihood combines the Poisson likelihood66

for each observation and the normal density for each random effect coefficient. We demonstrate67

how the Poisson likelihoods and the normal densities are affected differently during a proposal to68

add a covariate for a regular RJMCMC algorithm and one including hierarchical centering.69

We demonstrate the improved model mixing using a case study of point transects of indigo70

buntings (Passerina cyanea L.). Point transects are a form of distance sampling (Buckland et al.,71

2001) where, in addition to the number of detections during the counts, distance from the point to72

each detection is collected. This allows estimation of the average detection probabilities at the point73

and adjustment of counts for imperfect detection. To study the effect of establishing conservation74

buffers along margins of agricultural fields on density of several species of conservation interest,75

pairs of points were set up at the edge of fields in a number of states in the USA. These pairs of76

points consisted of one point on a treatment field and one on a nearby control field without a buffer77

and these pairs will be referred to as sites in the following. Counts were repeated 1–4 times in78

each year 2006–2007. We use a combined likelihood including the likelihoods for the detection79

function and the log-linear Poisson model where counts are adjusted for imperfect detection within80

the search area around the point (Oedekoven et al., 2014). A random effect for site is included in81
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the Poisson model to accommodate correlated counts between different sites.82

In the following we describe how to implement hierarchical centering for RJMCMC, describe83

the effects on the dynamics of the algorithm, and present updating methods for the RJ step using84

hierarchical centering (section 2). We then apply the methods to our case study (section 3) and85

confirm our results with a simulation study (section 4) and discuss our findings (section 5).86

2. Hierarchical Centering87

The hierarchical centering described in this paper refers to mixed effect models where a normal88

distribution is assumed for the random effect. Other distributions may be assumed for the random89

effect (e.g. Komárek and Lesaffre, 2008) to which these methods can be applied but we focus90

on the normal distribution for simplicity. We describe the case for a glmm with a Poisson error91

structure, suitable e.g. for fitting a model to correlated count data from repeated measurements.92

In the following we denote the different groups for the random effect with subscript j and the93

repeated measurements within the individual groups with subscript r. Here, the expected value94

λjr is modelled via a log-link function with a common intercept, β0 and random effect coefficients95

bj for groups j are included for which normality is assumed. For a mixed effect model without96

hierarchical centering, the random effect is incorporated into the model under the assumption of a97

global zero-mean and unknown standard deviation, σb, i.e. bj ∼ N (0, σ2
b ) (e.g. Bates, 2009). Let98

us assume we have a set of K covariates for k = 1, ..., K, xk (and associated coefficients, βk) that99

can be incorporated as fixed effects. The expected value for the full model including all covariates100

may then be expressed as:101

λjr = exp

(
β0 +

K∑
k=1

xkjrβk + bj

)
, bj ∼ N

(
µj = 0, σ2

b

)
, (1)

where the xkjr are the measured covariate values corresponding to the rth observation of the re-102

sponse of group j. While all potential models include the intercept and the random effect, different103

models included in the RJMCMC algorithm correspond to the combinations of covariates present104

in the model (i.e. non-zero βk values). During a between-model move (the RJ step) of an RJM-105

CMC algorithm using this scenario, the proposal to delete or add one (or more) of the covariates106

alters the formula for λjr while the distribution for the random effects terms bj remains the same107
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(see Appendix A for details on the RJ step).108

Let us now assume that one covariate, say x1, was measured at the group level, i.e. values for109

all repeated measurements for this covariate within a given group were the same, which allows110

us to use x1 for hierarchical centering. In hierarchical centering, the mean of the random effect111

is modelled using a combination of the intercept β0 and one or more covariates that are “pulled112

from” the λjr model from (1) (Gelfand et al., 1995). In the case that the intercept and covariate x1113

are used for centering, the full model from (1) becomes:114

λjr = exp

(
K∑
k=2

xkjrβk + bj

)
, bj ∼ N

(
µj = β0 + x1jβ1, σ

2
b

)
. (2)

Note that we omitted the subscript r for covariate x1 in (2) since we assume that the measured115

values for this covariate were the same for all observations in group j. The proposal to delete116

or add x1 from the model during the RJ step of the RJMCMC algorithm involves altering the117

distribution for bj , while the proposal to delete or add any other covariates remains the same as118

before in (1) (altering the formula for λjr).119

In the case that all k covariates were measured at the group level, all covariates may be included120

in the centering and the full model from (1) becomes:121

λjr = exp (bj), bj ∼ N

(
µj = β0 +

K∑
k=1

xkjβk, σ
2
b

)
. (3)

Again, we omitted the subscript r for the covariates in the model for µj in (3). In (3), it could be122

omitted from λjr as well, as there are no covariates in the λjr model (or the µj model) that may vary123

between different observations within the same group. However, we keep it for simplicity in the124

following equations. In this scenario, the formula for λjr remains unchanged during the proposals125

to delete or add any of the covariates, while the distribution for bj changes for each proposed model126

move.127

We note that it is essential that only those covariates are included in the centering (i.e. x1 in128

(2) or xk with k=1,...,K in (3)) that have the same measured value for all observations within a129

group (Browne et al., 2009). We refer to a group in terms of the grouping unit for the random130

effect where grouping should occur to account for intra-group dependence (Davison, 2003). All131
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observations belonging to the same group j are modelled with the same random effect coefficient132

bj in the equations above.133

The proposed hierarchical centering is only applicable if for at least one covariate, measured134

values for the respective covariate are the same within a group. If, for example, the grouping unit135

for a study is site, then the covariate state (the geographical governed entity) can be included in136

the centering as each site only belongs to one state and all repeated observations for a site belong137

to the same state. Conversely, Julian day could not be included as values will likely vary between138

repeated measurements. As long as this condition holds, any combination of covariates may be139

included.140

Hierarchical centering relies on the fact that the random effect coefficients pick up the effect of141

the covariates included in the centering (given that they have an effect) as they are updated during142

the within-model move of each iteration of the RJMCMC. Running separate MCMC algorithms143

(without between-model moves) on the full models from (1), (2) or (3) should result in nearly144

identical summary statistics for the covariates if the chain was run long enough (since all Markov145

chains have the same stationary distribution), although mixing might be different for these different146

parameterisations. However, when including the between-model moves in an RJMCMC algorithm,147

mixing problems can become more severe, potentially leading to different summary statistics - due148

to lack of convergence - and hence potentially to the wrong conclusions. Here, convergence and,149

hence, obtaining correct results may depend on which scenario and initial starting values were150

used. If, e.g. under the scenario of (1), the random effect coefficients absorb the effect of covariate151

x1, the chain may get “stuck” in models that do not include x1. For the scenarios of (2) and152

(3), moves to models including covariate x1 would be favoured if the random effect coefficients153

absorbed the effect of x1 as then the coefficients will be closer to their modelled means. We will154

show below that this is due to the fact that here different parts of the likelihood are affected by a155

proposed model move compared to (1).156

2.1. Effects of hierarchical centering on RJMCMC dynamics157

Using either one of the models for λjr from above ((1), (2), or (3)), the likelihood of the log-158

linear Poisson model, Ln(β, σb), with a normally distributed random effect may be formulated as159
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(modified from McCulloch and Searle, 2001):160

Ln(β, σb) =
J∏
j=1

 Rj∏
r=1

(λjr)
njr exp (−λjr)
njr!

× 1√
2πσ2

j

exp

(
−(bj − µj)2

2σ2
j

), (4)

where vector β contains the coefficients for covariates included in the models and njr are the161

observed measurements of the response. The indices j = 1, 2, 3, ..., J represent the groups for the162

random effect and r = 1, 2, 3, ..., Rj indices for the different measurements taken for the jth group.163

Hence for each group of observations, j, the probability of observing njr under the log-linear164

Poisson model with expected value of λjr is multiplied for all observations within that group, which165

is then multiplied by the normal density of the random effect coefficient bj . The only coefficients166

that influence both parts of this likelihood, i.e. the Poisson likelihood for the observations and the167

normal densities, are the random effect coefficients, regardless of which scenario is used from the168

previous section.169

Consider now, that we use this likelihood as part of calculating the acceptance probabilities for170

updating the model as well as the fixed and random effect coefficients in an RJMCMC algorithm171

(e.g. Oedekoven et al., 2014). Both the Poisson likelihood and the normal densities are higher if172

the observed value of the response or the random effect coefficients are closer to their respective173

means (λjr or µj , respectively). Hence, combining what we know from (1) - (4), it is evident that174

the Poisson likelihoods will improve if the variation that is not accounted for by the fixed effect175

coefficients is picked up by the random effect coefficients (which – as well as the fixed effect176

coefficients of the current model – are updated during the within-model move). On the other hand,177

the normal densities will return higher values for random effect coefficients close to their mean178

values.179

Intuitively, one may think that a problem arises for a between-model move (using models from180

(1)) when a covariate, say x1, may have an effect but is not included in the current model. Then,181

the random effect coefficients may begin to absorb this effect and in this manner, adjust the value182

for λjr to improve the likelihood. This may result in a “tug-of-war” between the Poisson likeli-183

hood trying to adjust the coefficients in such a manner that the effect of x1 is accounted for and,184

on the other hand, the normal densities trying to keep the coefficients close to their mean, i.e. zero185

for (1)). This will typically also result in an inflated random effect standard deviation since the186
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random effect coefficients are replacing some unexplained variability attributable to x1. If this187

has indeed occurred, an acceptance of x1 into the model during a between-model move proposal188

may become very unlikely as its effect is already accounted for by the random effect coefficients.189

Hence, during a proposal to add x1, the new model with x1 will create inferior λjr. These will then190

return decreased likelihood values even if the randomly drawn value(s) for x1 would produce a191

larger likelihood under circumstances before the effect has been absorbed by the random effect co-192

efficients. In other words, the values of the random effect coefficients are dependent on the model.193

A strategy to account for this could be to jointly update the coefficient value(s) for covariate x1194

and the values for the random effect coefficients. However, this complicates the RJ step involving195

more complex proposal distributions.196

Alternatively, this issue may be addressed using hierarchical centering since proposing to add197

x1 using either (2) or (3) into the model will not change λjr (and the Poisson likelihood). Here,198

the random effect coefficients absorb the effects of the covariates included in the model (given199

they have an effect) within the mean of the random effect distribution (in addition to the intercept200

β0). Using (2) this would be only covariate x1; using (3) this would be covariates xk with k =201

1, 2, 3..., K. The only part of the likelihood that is affected when updating this/these covariate(s)202

for within-model and between-model moves are the normal densities from (4). It is likely that, on203

average, the normal densities improve for the individual random effect coefficients as these will204

on average be closer to their assumed mean. As λjr remains the same, likelihood values returned205

by the Poisson part of (4) remain the same (which also increases the speed of calculating the206

acceptance probability for the RJ step since only the normal densities need to be evaluated).207

2.2. RJ updating methods using hierarchical centering208

To demonstrate how to implement hierarchical centering, we use a simple example where209

during the between-model move of iteration t + 1 we propose to include covariate x1 into an210

intercept-only model, say model m. Suppose that at iteration t the current state of the chain is211

model m, where λjr = exp (bj) with bj ∼ N (µj = β0, σ
2
b ) from (3) (although if x1 is the only212

covariate available, K = 1 and (2) and (3) are equivalent). During iteration t + 1 we propose to213

move to model m′ by adding covariate x1. Hence, model m′ is defined as λ′jr = exp
(
b′j
)

with214

b′j ∼ N
(
µ′j = β′0 + x1jβ

′
1, σ

′
b
2
)
. For simplicity, let us assume that covariate x1 represents a cat-215
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egorical covariate with only two levels where the first level is absorbed in the intercept β′0 and216

the second level has an associated coefficient β′1; hence, x1 is either 0 for the first level or 1 for217

the second level. We note that these methods also apply in the case that the covariate used for218

centering has more than two factor levels. Let us further assume that all measurements within a219

group j belong to the same level of x1 and that, for simplicity, we have 200 groups where groups220

j = 1, ..., 100 belong to the first level of x1 and groups j = 101, .., 200 belong to the second level221

of x1. We use the identity function as the bijective function (King et al., 2010):222

u′0 = β0, β′0 = u0, β′1 = u1 (5)

and draw samples u from the respective proposal distributions for the parameters β′0 and β′1. See223

Appendix A for further details.224

In the following, we describe two different ways for implementing the RJ step. The difference225

between them lies in the definition of the proposal distributions for the new parameters for the226

between-model move, and, hence, should only have an influence on the acceptance probability227

of this move. The second approach (Section 2.2.2) uses more information compared to the first228

(Section 2.2.1) and should, on average, return higher acceptance rates for this move. Either method229

should not have an influence on estimated posterior summary statistics of the parameters in the final230

model given that the chain had an adequate burn-in.231

2.2.1. Hierarchical centering using predefined proposal distributions232

For this method, we define proposal distributions for the coefficients β0, β′0 and β′1. If, for233

example, normal proposal distributions are used, we define the proposal distributions for coeffi-234

cients β′1 as β′1 ∼ N
(
µ′1, σ

′
1
2
)
, for some predefined µ′1 and σ′1. Equivalently, the normal proposal235

distributions for the intercepts β0 and β′0 are defined as β0 ∼ N (µ0, σ0
2) and β′0 ∼ N

(
µ′0, σ

′
0
2
)

236

(for some predefined µ0, σ0, µ′0 and σ′0).237

2.2.2. Hierarchical centering using updated proposal distributions238

Here, the mean µ0 of the proposal distribution for the global intercept β0 of model m and the239

means µ′0 and µ′1 of the proposal distributions for the coefficients β′0 and β′1 of modelm′ are updated240

before the RJ step during each iteration of the RJMCMC algorithm. To update µ0 at iteration241
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t + 1, we take the overall mean b̄tj of the current values of all random effect coefficients btj (i.e.242

βt+1
0 ∼ N(µt+1

0 = b̄tj, σ
2
0) including groups j = 1, ..., 200). To update the µ′1 at iteration t + 1, we243

take the mean b̄′tj of the random effect coefficients from iteration t belonging to the second level of244

covariate x1. Hence, we have β′t+1
1 ∼ N(µ′t+1

1 = b̄′tj , σ
′2
1 ) only including groups j = 101, ..., 200.245

To update µ′0 at iteration t + 1, we take the mean b̄′tj of all random effect coefficients belonging to246

the first level of covariate x1 (i.e. groups j = 1, ..., 100).247

3. Case study: point transects of indigo buntings248

3.1. The data249

To establish the success of planting herbaceous buffers around agricultural fields in several250

South-eastern and Midwestern US states, point transect surveys were conducted from a large num-251

ber of randomly selected fields during the breeding season (May−July) of 2006−2007 in each252

participating state (Fig. Appendix B, Oedekoven et al., 2013). Survey points on control fields253

of the same agricultural use and located within 1−3km were surveyed concurrently. Each pair254

of adjacent points from a treated and control field was considered a site. Points were located at255

the edge of the fields. Observers recorded all male indigo buntings (all singles) detected either256

visually or aurally during a 10-minute count at each point in one of five predetermined distance257

intervals (0−25, 25−50, 50−100, 100−250, 250−500 and >500m). It is assumed that indigo258

buntings distribute themselves evenly within and in the various possible habitats adjacent to the259

field. Only those sites that were surveyed at least once in each survey year were included in the260

analysis. These 446 sites were located in nine states: Georgia, Iowa, Illinois, Kentucky, Missouri,261

Mississippi, Ohio, South Carolina and Tennessee.262

3.2. Methods263

As the models from (1) to (3) assume perfect detection on the plot, we needed to supplement264

these with a model to adjust counts for imperfect detection. We used the methods described in265

Oedekoven et al. (2014): a detection function was fitted to the frequency of detections in each266

distance bin. This detection function was used to estimate the effective area, ν (the area beyond267

which as many birds were seen as were missed within, Fig. Appendix B), which was incorporated268

into the log-linear Poisson model for the counts as an offset (Buckland et al., 2001). The full model269
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consisted of the likelihood component for the detection function and the likelihood component for270

the counts (see Oedekoven et al., 2014 for details). In addition, we extended the count model to271

include a subscript p to denote the two points at each site. With the offset included, the full model272

without hierarchical centering from (1) became:273

λjpr = exp

(
β0 + x′

1jβ1 +
K∑
k=2

xkjprβk + bj + ln (ν)

)
, bj ∼ N

(
µj = 0, σ2

b

)
. (6)

Site was used as the grouping factor for the random effect. Available covariates were state (x1, a274

factor with nine levels), year (x2, factor with two levels: 2006 and 2007, corresponding to x2 = 0275

and x2 = 1, respectively), Julian day (x3, discrete with observed integers ranging from 142 to 211)276

and type (x4, factor with two levels: control (x4 = 1) or treatment (x4 = 1) plot). Factor covariate277

state is represented by a vector x1j of length 8 either with eight entries zero for observations from278

state Georgia – as the coefficient of the baseline state is absorbed in the intercept – or with seven279

entries zero, and one 1, indicating which state site j was in, and β1 is a column vector of eight280

coefficients. Note that similar to (2) we omitted the subscripts r and p for covariate x1 since the281

values for this covariate were the same for all observations in group j. Furthermore, we did not282

include a subscript for the effective area ν as, for simplicity, we only considered global detection283

functions, i.e. without stratification or covariates in the detection model. Hence, given a model284

and parameter value(s) for the detection function, estimates of the effective area ν were the same285

for all counts. As state was the only covariate with consistent values for all measurements within286

a given site, we were limited to using only one covariate within the hierarchical centering (i.e.287

corresponding to (2)). With hierarchical centering using the state covariate, x1, the full model288

from (2) became:289

λjpr = exp

(
K∑
k=2

xkjprβk + bj + ln (ν)

)
, bj ∼ N

(
µj = β0 + x′

1jβ1, σ
2
b

)
. (7)

To estimate parameters of both the detection function (θ) and the count model (β, σb) in one step,290

we combined the likelihood components pertaining to the respective models using the combined291

likelihood, Ln,y (β, σb,θ) = LyG(θ)Ln(β, σb|θ) described by Oedekoven et al. (2014). In com-292

parison to (4), Ln(β, σb|θ) is conditional on detection function parameters θ when including the293
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effective area as an offset in (6) or (7). The data contained J = 446 sites. Rj , the maximum294

number of visits to a site, ranged from 2 to 8 between sites as each site was visited 1-4 times in295

each of the two survey years. As each site contained two points, we extended (4) accordingly:296

297

Ln(β, σb|θ) =
446∏
j=1

 2∏
p=1

Rj∏
r=1

(λjpr)
njpr exp (−λjpr)
njpr!

× 1√
2πσ2

j

exp

(
−(bj − µj)2

2σ2
j

). (8)

As distances were recorded in intervals (rather than exact distances), the likelihood for the detection298

function component, LyG(θ) was defined as the multinomial likelihood where fi represents the299

probability that a detected animal is in the ith distance interval (for details on calculating the fis300

see Appendix B):301

LyG (θ) =

 n!
I∏
i=1

ni!

 I∏
i=1

fni
i . (9)

Here, n represents the total number of detected animals and ni the number of animals detected in302

the ith distance interval. As detection probabilities generally dropped below 0.1 beyond 100m, we303

limited the analysis to the three innermost distance intervals (0–25, 25–50, 50–100m).304

For the detection models, we considered the half-normal and hazard-rate key functions as the305

two (non-nested) model options (Buckland et al., 2001). For the count model, we considered306

all possible combinations of the covariates year, type, Julian day and state. We ran two different307

analyses on the same data. For the first analysis we used “regular” RJMCMC methods with a global308

zero-mean random effect (as shown in (6)) which we refer to as the global zero-mean analysis309

(GZM).310

For the second analysis we implemented hierarchical centering by pulling the intercept β0 and311

covariate state from the λjpr model and included them in the model for the random effect mean312

(as shown in (7)). This analysis will be referred to as HC in the following. We used predefined313

proposal distributions for all parameters. These were the same for both analyses (see Table B.1).314

Prior model probabilities were equal and the identity function similar to (5) used for the bijec-315

tive function of any proposed move. For both analyses, we placed the same set of uniform priors316

on the parameters (Table B.1).317

For each analysis, the chain was started from the most parsimonious models: the half-normal318
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detection function and a count model containing the fixed effect intercept and a random effect for319

site. We ran 200 000 iterations for each analysis, the first 20 000 were considered as the burn-in320

phase. The effective sample size was calculated for each parameter in the preferred model using321

the function effectiveSize from the R package coda. We express it as the effective sample size per322

1000 iterations that the chain was in the preferred model to make this quantity comparable between323

the results of different methods.324

3.3. Results325

The preferred detection model was the hazard-rate function with posterior probability of 1.00326

for both analyses (Table B.2). Estimated probabilities for the count models differed between the327

methods. For GZM, the preferred count model included the covariates type and Julian day with328

probability 0.85. The alternative model included the additional covariate year and was selected329

during the remaining 15% of the iterations. The covariate state was never included in any of330

the models for this method. By contrast, all models included state for HC. The preferred model331

included type, Julian day and state (0.95 probability) and the second most preferred model included332

type, Julian day, year and state (0.05 probability).333

While the probabilities of being in the model were similar for the covariates year, Julian day334

and type between the two analyses, the probability of state being in the model was 0.00 for GZM335

and 1.00 for HC. To investigate further, we used a range of different initial starting values and336

models to assess convergence. In particular, when we initialised the chain so that state was in337

the initial model for the GZM analysis, the posterior probability for state was 1.00. Repeated338

simulations provided the same output with state not being updated in GZM. Hence, for GZM339

the resulting model probabilities were conditional on the model that the chain was started with.340

In contrast, consistent results were obtained for the HC analysis, irrespective of initial values or341

initial model choice of the Markov chain.342

Summary statistics for the parameters resulting from both GZM analyses (started with and343

without state) and the HC analysis are given in Table B.3. Means and 95% credible intervals344

(CRI) were nearly identical between all methods for the parameters of the hazard-rate detection345

function. Means and 95% CRIs were also similar for the count model parameters between the three346

methods, given that the parameters were in the model. Although means for parameter Julian day347
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varied, CRIs overlapped between all three methods. The exception was the random effect standard348

deviation of the count model which was very different for GZM started without state compared349

to the other two analyses. The mean was larger for GZM without state and CRIs did not overlap350

those of the other two methods. This was likely due to the random effects coefficients absorbing351

the state effect.352

We refrain from including the GZM without state analysis in the comparison of effective sam-353

ple sizes as here, due to non-convergence, the posterior distribution differed from the other two354

analyses (GZM with state and HC). The effective sample sizes for detection function parameters355

were similar between all the GZM with state and HC analyses (Table B.4). Effective sample sizes356

for count model parameters were generally smaller for HC compared to GZM with state except357

for the random effect standard deviation and the intercept. It was notable that the effective sample358

sizes for the state coefficients were consistently at least two times but up to over 12 times larger for359

GZM with state compared to HC. The only notable increase in effective sample size from GZM360

with state to HC was for the random effects standard deviation with 2.46 for GZM with state and361

8.54 for HC.362

4. Simulation study363

The following simulation study was used to investigate whether our proposed methods would364

consistently improve model mixing. In particular, for a covariate with nested random effects that365

was part of creating the pattern in the response variable, we investigated whether posterior model366

probabilities would differ between hierarchical centering and regular RJMCMC methods. Using367

(2), we simulated 300 data sets of approximately 500 observations each that were similar to our368

case study. The response variable followed a Poisson distribution for which the expected value λjr369

was modelled as a function of a linear term, say Julian day x2, and random effects coefficients,370

bj for the jth site. The bj were simulated using a factor covariate with five levels, say state x1371

(with four associated coefficients β1 randomly drawn from a uniform distribution, U(−2.6, 0.8),372

during each simulation and the coefficient of the first level absorbed in the intercept β0), to model373

the mean µj of their normal distribution, bj ∼ N
(
µj = β0 + x′

1jβ1, σ
2
b

)
and the random effects374

standard deviation σb = 0.7. Sites were nested within states with 25− 35 sites per state and repeat375

observations (2 − 6, subscript r) per site. We also created a dummy variable, a factor covariate376
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with eight levels which was not part of the model for generating the response. Similar to x1, this377

dummy variable had constant levels within each random effect group. However, the levels of the378

dummy variable to which random effects groups were attributed were chosen at random and did379

not match the pattern for attributing random effects groups to levels of x1.380

Each data set was analysed using two different approaches equivalent to GZM without state381

and the HC methods above. The former refers to “regular” RJMCMC methods with a global zero-382

mean random effect (as shown in (1)). The latter refers to hierarchical centering methods where383

the intercept β0, state and the dummy variable were included in the model for the random effect384

mean (as shown in (3)).385

The RJMCMC analyses for each data set were initiated with the models for λjr and µj that386

only contained the intercept and random effects coefficients between the two models combined387

and the chains for both analysis methods had the same initial coefficient values. Both approaches388

used the same proposal distributions for new parameter values, the same mechanism for updating389

the model, i.e. proposing to add or delete covariates depending on whether it was currently in the390

model (including the dummy variable), and the same MH algorithm for updating parameter values.391

Each analysis included 100 000 iterations where the first 10 000 were considered burn-in.392

For the GZM without state analysis, posterior probabilities of state being in the model were 0393

for all 300 data sets. By contrast, posterior probabilities of state being in the model for the HC anal-394

ysis were on average 0.94 (95% CRI = {0.62,1.00}) across all 300 data sets. The random effects395

standard deviation was generally overestimated for those models without state, i.e. those iterations396

of the HC analysis where state was not in the model (posterior distribution mean 0.92, 95% CRI397

= {0.69,1.24}) and for all models from the GZM analysis (0.96, {0.71,1.32}). By contrast, for398

those models with state from the HC analysis, the posterior distribution of this parameter (0.66,399

{0.49,0.88}) was more accurate with a mean closer to the known true value 0.7. The marginal400

posterior probability that the dummy variable was included in the model was zero for all 300 data401

sets and both analysis methods.402

5. Discussion403

The purpose of incorporating random effects in count models is generally to model variation404

that is otherwise unaccounted for. When using RJMCMC methods, the danger exists that the405
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random effect coefficients account for too much of the variation and prevent the inclusion of a406

fixed effect covariate into the model – a problem that is not limited to the linear predictor for the407

Poisson distribution. We demonstrated this case with our GZM analysis that was initiated without408

state in the model. Due to poor mixing (between models) leading to lack of convergence, the409

covariate state was never selected. This would have led to incorrect inference as the sampled410

values are not from the posterior distribution due to poor mixing. In addition, for this analysis411

the resulting random effect standard deviation was much larger compared to the HC analysis of412

the same data. Both these findings, the poor model mixing and inflated random effects standard413

deviation for the GZM analysis, were confirmed by our simulation study.414

For the HC analysis of the case study, the model was also initiated without state but revealed415

posterior probabilities of state being in the model of 1.00. Furthermore, the mean and 95% CRI of416

the random effects standard deviation were smaller compared to the GZM without state analysis.417

Both these findings were again confirmed by our simulation study. For both analyses of the case418

study that were initiated without state in the model, GZM and HC, the random effect coefficients419

absorbed the effect of the state covariate. For GZM, this prevented the inclusion of this parameter420

into the model. For HC, this favoured the inclusion of state into the model as here this covariate421

was part of the model for the random effect mean. Here, the chain was able to explore models with422

state as a covariate due to improved mixing between models.423

Unsurprisingly, implementing hierarchical centering had little effect on the remaining covari-424

ates in the model as these were not involved in the centering. However, we could not confirm425

the findings of Browne (2004), that implementing hierarchical centering would improve the ef-426

fective sample size for the covariate involved in the centering. He compared the effective sample427

sizes for the same covariate in two different MCMC chains, one with hierarchical centering and428

one without. For our case study, effective sample sizes for coefficients involved in the centering429

were mostly larger for GZM with state compared to HC except for the intercept and the random430

effect standard deviation where, using hierarchical centering, the effective sample size increased431

3.47-fold.432

Overall we showed that implementing hierarchical centering in the context of RJMCMC algo-433

rithms improves mixing between models and, hence, improves the inference on model parameters.434

For our case study, summary statistics for covariates not involved in the centering were nearly435
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identical between the GZM and the HC analyses. However, inference on the state covariate using436

the GZM analysis could potentially have led us to believe falsely that this covariate had no effect437

on densities of indigo buntings.438
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Appendix A. RJMCMC algorithm455

In general, the posterior distribution π (δm,m|x) is given as the distribution encompassing the456

joint posterior distribution of models and parameters (Green, 1995; King et al., 2010) with:457

π (δm,m|x) ∝ L(x|δm,m)p(δm|m)p(m). (A.1)

Here, L(x|δm,m) is the probability density function of the data x conditional on model m with458

current parameter values δm, p(δm|m) is the prior probability for model parameters δm conditional459

on the chain being in model m, and p(m) is the prior probability of model m.460
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Suppose that we propose to move from model m with parameters δm to model m′ with param-461

eters δ′m′ during the between-model move (RJ step) of an RJMCMC algorithm. We define u and462

u′ as random samples from some proposal distribution for the respective parameters. To transform463

parameters δm into δ′m′ we use a bijective function which may have the form (δ′m, u
′) = g(δm, u).464

Then, the acceptance probability is given by min(1, A) where A can be expressed as:465

A =
π(δ′m′ ,m

′|x)P (m|m′)q′(u′)
π(δm,m|x)P (m′|m)q (u)

∣∣∣∣∂g(δm, u)

∂(δm, u)

∣∣∣∣ . (A.2)

P (m′|m) is the probability of proposing to move to model m′ given that the chain is in model m,466

q(u) and q′(u′) are the proposal densities of u and u′.
∣∣∣∂g(δm,u)∂(δm,u)

∣∣∣ is the Jacobian.467

For the within-model move (the MH step) of the RJMCMC algorithm we use a random walk468

single-update Metropolis-Hastings algorithm (Hastings, 1970; Metropolis et al., 1953).469

470

Appendix B. The detection function component471

To calculate the offset for (6) and (7), we used the probability density function of observed472

distances, f(y) = π(y)g(y)/
∫ w
0
π(y)g(y)dy, where w is the truncation distance (Buckland et al.,473

2001). The function describing the distribution of birds is given for points by π(y) = 2y/w2 and474

the detection function is given by g(y). We included two detection functions as model options in475

the RJMCMC algorithm, the half-normal (g(y) = exp (−y2/2σ2)) and the hazard-rate (g(y) = 1−476

exp (−(y/σ)−τ )). When using interval distance data (as opposed to exact distance measurements),477

fi is defined as the probability that a detected animal is in the ith interval which is delineated by478

the cutpoints ci−1 and ci and is given by:479

fi =

ci∫
ci−1

f (y) dy

w∫
0

f (y) dy

, (B.1)

where the truncation distance, w corresponds to the outermost cutpoint. The fi feed into the like-480

lihood component given in (9). g(y) is also used to calculate the effective area, which for points is481

given by ν = 2π
∫ w
0
yg(y)dy.482
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List of Figures530

B.1 Left: Distribution of surveys conducted as part of the CP-33 Monitoring Program531

between 2006-20011 (source: http://www.fwrc.msstate.edu/bobwhite/monitoring/index.asp).532

Right: frequency of detections in the three distance bins (0–25, 25–50, 50–100m)533

as rescaled blue histogram bars; probability density of observed distances (PDF)534

using means from the posterior distribution of parameters of the hazard-rate detec-535

tion function (see Table B.3, black line); the slope of the red line is the slope of536

the PDF at distance zero; rho is the radius of the effective area ν; the red polygon537

represents the proportion of birds missed within rho and is equal in size to the538

green polygon which represents the proportion of birds detected between rho and539

the truncation distance w of 100m (Buckland et al., 2001). See Appendix B for540

more details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23541
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Figure B.1: Left: Distribution of surveys conducted as part of the CP-33 Monitoring Program between 2006-20011
(source: http://www.fwrc.msstate.edu/bobwhite/monitoring/index.asp). Right: frequency of detections in the three
distance bins (0–25, 25–50, 50–100m) as rescaled blue histogram bars; probability density of observed distances
(PDF) using means from the posterior distribution of parameters of the hazard-rate detection function (see Table B.3,
black line); the slope of the red line is the slope of the PDF at distance zero; rho is the radius of the effective area ν;
the red polygon represents the proportion of birds missed within rho and is equal in size to the green polygon which
represents the proportion of birds detected between rho and the truncation distance w of 100m (Buckland et al., 2001).
See Appendix B for more details.
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Table B.1: Means and standard deviations (SD) of normal proposal distributions for model parameters as well as lower
and upper boundaries for uniform prior distributions for model parameters. HN and HR refer to the half-normal and
the hazard-rate detection functions respectively. We note that the random effect standard deviation and the intercept
for the count model were always in the model.

Parameters Mean SD Lower Upper
Detection Function Parameters
Scale HN: 37 2 10 99
Scale HR: 28 2 10 99
Shape HR: 2 1 1 10
Count Model Parameters
Random effect standard deviation – – 0 1
Intercept: – – -20 -7
Year level: 2007 0.05 0.2 -1 1
Type level: Treated 0.3 0.1 0 1
Julian Day: 0.0055 0.003 -0.1 0.1
State level: IL 0.4 0.5 -2.5 2.5
State level: IN 0.3 0.5 -2.5 2.5
State level: KY 0.7 0.5 -2.5 2.5
State level: MO 0 0.5 -2.5 2.5
State level: MS 0.5 0.5 -2.5 2.5
State level: OH 0 0.5 -2.5 2.5
State level: SC 0.2 0.5 -2.5 2.5
State level: TN 0.8 0.5 -2.5 2.5
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Table B.2: Posterior model probabilities for the analyses of the indigo bunting data. Shown are results from the GZM
analysis (global zero-mean for the random effect) and results from the HC (hierarchical centering) analysis. Both
analyses were started without state in the initial model.

Analysis GZM HC
Detection Model
CDS: Hazard-rate key 1.000 1.000
Count Model
Type + JD 0.851 0.000
Year + Type + JD 0.149 0.000
Type + JD + State – 0.946
Year + Type + JD + State – 0.054
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Table B.3: Mean and 95% credible intervals for models with highest posterior support from the analyses of the indigo
bunting data. Results are from the analyses GZM (global zero-mean) started without state, GZM started with state
and HC (hierarchical centering) started without state. For models with state, the state level GA is absorbed in the
intercept.

Analysis GZM without state GZM with state HC
Detection Model Parameters
Scale HR σ 28.20 28.21 28.05

(25.03,31.25) (24.77,31.23) (25.00,31.04)
Shape τ 2.08 2.08 2.08

(1.92,2.26) (1.91,2.26) (1.92,2.25)
Count Model Parameters
Random effect standard deviation σb 0.77 0.58 0.51

(0.65,0.91) (0.49,0.68) (0.45,0.57)
Intercept β0 -10.62 -10.76 -10.44

(-11.21,-10.13) (-11.25,-10.29) (-10.97,-10.01)
Type level: Treated β4 0.31 0.31 0.30

(0.24,0.37) (0.24,0.37) ) (0.24,0.37)
Julian Day β3 0.008 0.006 0.004

(0.006,0.012) (0.003,0.009) (0.002,0.007)
State level: IL β1IL - 0.88 0.97

- (0.54,1.23) (0.63,1.32)
State level: IN β1IN - 0.70 0.79

- (0.36,1.06) (0.45,1.14)
State level: KY β1KY

- 1.16 1.24
- (0.84,1.50) (0.90,1.57)

State level: MO β1MO
- 0.27 0.35
- (-0.02,0.58) (0.04,0.67)

State level: MS β1MS
- 1.12 0.97
- (0.76,1.49) (0.64,1.31)

State level: OH β1OH
- 0.40 0.39
- (0.08,0.71) (0.07,0.72)

State level: SC β1SC
- 0.66 0.68
- (0.31,1.02) (0.32,1.04)

State level: TN β1TN
- 1.31 1.38
- (0.98, 1.65) (1.04,1.72)

27



Table B.4: Effective sample sizes per 1000 iterations that the chain was in the respective preferred model for model
parameters from the analyses of the indigo bunting data: GZM (global zero-mean) with state in the initial model and
HC (hierarchical centering).

Parameter GZM with state HC
Detection Model
Scale HR 5.04 4.99
Shape 6.18 5.92
Count Model
Random effect standard deviation 2.46 8.54
Intercept 0.57 1.06
Type Treatment 71.15 64.07
Julian Day 0.58 0.26
State IL 4.15 0.64
State IN 3.63 0.69
State KY 2.58 0.42
State MO 3.38 0.28
State MS 3.30 0.57
State OH 3.54 0.39
State SC 4.41 0.69
State TN 3.74 0.52
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