2,491 research outputs found
The case for the multi-species ecological system, with special reference to succession and stability
Multi-species life support system based on ecological theor
Beyond connectedness: why pairwise metrics cannot capture community stability
The connectedness of species in a trophic web has long been a key structural characteristic for both theoreticians and empiricists in their understanding of community stability. In the past decades, there has been a shift from focussing on determining the number of interactions to taking into account their relative strengths. The question is: How do the strengths of the interactions determine the stability of a community? Recently, a metric has been proposed which compares the stability of observed communities in terms of the strength of three- and two-link feedback loops (cycles of interaction strengths). However, it has also been suggested that we do not need to go beyond the pairwise structure of interactions to capture stability. Here, we directly compare the performance of the feedback and pairwise metrics. Using observed food-web structures, we show that the pairwise metric does not work as a comparator of stability and is many orders of magnitude away from the actual stability values. We argue that metrics based on pairwise-strength information cannot capture the complex organization of strong and weak links in a community, which is essential for system stability
Maximum Power Efficiency and Criticality in Random Boolean Networks
Random Boolean networks are models of disordered causal systems that can
occur in cells and the biosphere. These are open thermodynamic systems
exhibiting a flow of energy that is dissipated at a finite rate. Life does work
to acquire more energy, then uses the available energy it has gained to perform
more work. It is plausible that natural selection has optimized many biological
systems for power efficiency: useful power generated per unit fuel. In this
letter we begin to investigate these questions for random Boolean networks
using Landauer's erasure principle, which defines a minimum entropy cost for
bit erasure. We show that critical Boolean networks maximize available power
efficiency, which requires that the system have a finite displacement from
equilibrium. Our initial results may extend to more realistic models for cells
and ecosystems.Comment: 4 pages RevTeX, 1 figure in .eps format. Comments welcome, v2: minor
clarifications added, conclusions unchanged. v3: paper rewritten to clarify
it; conclusions unchange
Assessing the importance of a self-generated detachment process in river biofilm models
1. Epilithic biofilm biomass was measured for 14 months in two sites, located up- and downstream of the city of Toulouse in the Garonne River (south-west France). Periodical sampling provided a biomass data set to compare with simulations from the model of Uehlinger, Bürher and Reichert (1996: Freshwater Biology, 36, 249–263.), in order to evaluate the impact of hydraulic disturbance.
2. Despite differences in application conditions (e.g. river size, discharge, frequency of disturbance), the base equation satisfactorily predicted biomass between low and high water periods of the year, suggesting that the flood disturbance regime may be considered a universal mechanism controlling periphyton biomass.
3. However modelling gave no agreement with biomass dynamics during the 7-month long low water period that the river experienced. The influence of other biomass-regulating factors (temperature, light and soluble reactive phosphorus) on temporal biomass dynamics was weak.
4. Implementing a supplementary mechanism corresponding to a temperature-dependent self-generated loss because of heterotrophic processes allowed us to accurately reproduce the observed pattern: a succession of two peaks. This case study suggests that during typical summer low water periods (flow stability and favourable temperature) river biofilm modelling requires self-generated detachment to be considered
Nested species interactions promote feasibility over stability during the assembly of a pollinator community
The foundational concepts behind the persistence of ecological communities have been based on two ecological properties: dynamical stability and feasibility. The former is typically regarded as the capacity of a community to return to an original equilibrium state after a perturbation in species abundances and is usually linked to the strength of interspecific interactions. The latter is the capacity to sustain positive abundances on all its constituent species and is linked to both interspecific interactions and species demographic characteristics. Over the last 40 years, theoretical research in ecology has emphasized the search for conditions leading to the dynamical stability of ecological communities, while the conditions leading to feasibility have been overlooked. However, thus far, we have no evidence of whether species interactions are more conditioned by the community's need to be stable or feasible. Here, we introduce novel quantitative methods and use empirical data to investigate the consequences of species interactions on the dynamical stability and feasibility of mutualistic communities. First, we demonstrate that the more nested the species interactions in a community are, the lower the mutualistic strength that the community can tolerate without losing dynamical stability. Second, we show that high feasibility in a community can be reached either with high mutualistic strength or with highly nested species interactions. Third, we find that during the assembly process of a seasonal pollinator community located at The Zackenberg Research Station (northeastern Greenland), a high feasibility is reached through the nested species interactions established between newcomer and resident species. Our findings imply that nested mutualistic communities promote feasibility over stability, which may suggest that the former can be key for community persistence
Evaluating the Sustainability of a Small-Scale Low-Input Organic Vegetable Supply System in the United Kingdom
www.mdpi.com/journal/sustainabilit
Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model
Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures
History and philosophy of science in Biology teaching
Neste trabalho, buscamos evidenciar a concepção de História da Biologia que é veiculada nos livros didáticos. Para tanto, analisamos três coleções de livros de Biologia destinados ao Ensino Médio, e alguns livros universitários usados em cursos de formação de professores. Ao analisar este material curricular foi possível observar que a história apresentada é desvinculada do contexto cultural de cada período histórico, o que pode levar o aluno a construir uma falsa representação da ciência e do fazer científico.In this work, we search forto evidences the conception of the History of Biology being is propagated in textbooks. We analyze three Biology book collections designed estined forto middle schooledium education, and some university books used in teacher education courses. When analyzing this curricular material it was possible to observe that the history of biology presented is disengaged from entailedofthe cultural context of each historical period, and this what can lead the student to construct a false representation of science and of scientific meaning making
Ecology: a prerequisite for malaria elimination and eradication
* Existing front-line vector control measures, such as insecticide-treated nets and residual sprays, cannot break the transmission cycle of Plasmodium falciparum in the most intensely endemic parts of Africa and the Pacific
* The goal of malaria eradication will require urgent strategic investment into understanding the ecology and evolution of the mosquito vectors that transmit malaria
* Priority areas will include understanding aspects of the mosquito life cycle beyond the blood feeding processes which directly mediate malaria transmission
* Global commitment to malaria eradication necessitates a corresponding long-term commitment to vector ecolog
- …
