115 research outputs found
The Alchemical Heart: A Jungian Approach to the Heart Center in the Upanisads and in Eastern Christian Prayer
The heart is a rich symbol in religious traditions both East and West. When interpreted through a Jungian alchemical lens, the heart emerges as a symbol of psychospiritual
transformation, integration, and healing. This article re-visions the metaphor of the heart in the Upanisads and in Eastern Christian prayer through the use of Jung’s lectures on the heart cakra, his transcendent function theory, and as Spirit Mercurius. Each facet of this lens offers a variegated approach through which to explore the heart as mediating center of psychic polarities, what Jung referred to as the union of opposites. When interpreted through an alchemical lens, the heart in both Eastern and Western traditions emerges as an alchemical womb of the philosopher’s stone, and offers the possibility of profound healing through the tension of opposites when held in the heart
May second generation long-acting injectable antipsychotics be prescribed as a first-line treatment of first episode in patients with schizophrenia? An overview.
Schizophrenia is a chronic and disabling disorder, characterized by positive, negative, cognitive and affective symptoms. The first episode of schizophrenia (FES) usually occurs after a variable period of prodromic symptoms and the importance of early detection and treatment of FES has been raised in psychiatric literature from long time. In fact, it has been suggested that the first years of the schizophrenic disorder may be a critical period for long-term prognosis, as the relationship between the poor medication adherence and poorer outcome is well demonstrated. Longacting injectable formulations of second-generation antipsychotics (SGAs-LAIs) provide constant medication delivery and the potential for improved adherence. Currently, four SGAs-LAIs are available for the treatment of schizophrenia, risperidone long-acting injectable, olanzapine pamoate, paliperidone palmitate and aripiprazole. Several studies have also demonstrated efficacy and safety of such drugs in patients with schizophrenia. In the present paper the literature on SGAs-LAIs atypical antipsychotics in the treatment of FES will be reviewed and practical advice will be given concerning the use of this drug in the everyday clinical practice
PlGF Repairs Myocardial Ischemia through Mechanisms of Angiogenesis, Cardioprotection and Recruitment of Myo-Angiogenic Competent Marrow Progenitors
Despite preclinical success in regenerating and revascularizing the infarcted heart using angiogenic growth factors or bone marrow (BM) cells, recent clinical trials have revealed less benefit from these therapies than expected.We explored the therapeutic potential of myocardial gene therapy of placental growth factor (PlGF), a VEGF-related angiogenic growth factor, with progenitor-mobilizing activity.Myocardial PlGF gene therapy improves cardiac performance after myocardial infarction, by inducing cardiac repair and reparative myoangiogenesis, via upregulation of paracrine anti-apoptotic and angiogenic factors. In addition, PlGF therapy stimulated Sca-1(+)/Lin(-) (SL) BM progenitor proliferation, enhanced their mobilization into peripheral blood, and promoted their recruitment into the peri-infarct borders. Moreover, PlGF enhanced endothelial progenitor colony formation of BM-derived SL cells, and induced a phenotypic switch of BM-SL cells, recruited in the infarct, to the endothelial, smooth muscle and cardiomyocyte lineage.Such pleiotropic effects of PlGF on cardiac repair and regeneration offer novel opportunities in the treatment of ischemic heart disease
Reduced meiotic recombination on the XY bivalent is correlated with an increased incidence of sex chromosome aneuploidy in men with non-obstructive azoospermia
Both aberrant meiotic recombination and an increased frequency of sperm aneuploidy have been observed in infertile men. However, this association has not been demonstrated within individual men. The purpose of this study was to determine the association between the frequency of recombination observed in pachytene spermatocytes and the frequency of aneuploidy in sperm from the same infertile men. Testicular tissue from seven men with non-obstructive azoospermia (NOA) and six men undergoing vasectomy reversal (controls) underwent meiotic analysis. Recombination sites were recorded for individual chromosomes. Testicular and ejaculated sperm from NOA patients and controls, respectively, were tested for aneuploidy frequencies for chromosomes 9, 21, X and Y. There was a significant increase in the frequency of pachytene cells with at least one achiasmate bivalent in infertile men (12.4%) compared with controls (4.2%, P = 0.02). Infertile men also had a significantly higher frequency of sperm disomy than controls for chromosomes 21 (1.0% versus 0.24%, P = 0.001), XX (0.16% versus 0.03%, P = 0.004) and YY (0.12% versus 0.03%, P = 0.04). There was a significant correlation between meiotic cells with zero MLH1 foci in the sex body and total sex chromosome disomy (XX + YY + XY) in sperm from men with NOA (r = 0.79, P = 0.036)
Placental Growth Factor Contributes to Micro-Vascular Abnormalization and Blood-Retinal Barrier Breakdown in Diabetic Retinopathy
OBJECTIVE: There are controversies regarding the pro-angiogenic activity of placental growth factor (PGF) in diabetic retinopathy (DR). For a better understanding of its role on the retina, we have evaluated the effect of a sustained PGF over-expression in rat ocular media, using ciliary muscle electrotransfer (ET) of a plasmid encoding rat PGF-1 (pVAX2-rPGF-1).
MATERIALS AND METHODS: pVAX2-rPGF-1 ET in the ciliary muscle (200 V/cm) was achieved in non diabetic and diabetic rat eyes. Control eyes received saline or naked plasmid ET. Clinical follow up was carried out over three months using slit lamp examination and fluorescein angiography. After the control of rPGF-1 expression, PGF-induced effects on retinal vasculature and on the blood-external barrier were evaluated respectively by lectin and occludin staining on flat-mounts. Ocular structures were visualized through histological analysis.
RESULTS: After fifteen days of rPGF-1 over-expression in normal eyes, tortuous and dilated capillaries were observed. At one month, microaneurysms and moderate vascular sprouts were detected in mid retinal periphery in vivo and on retinal flat-mounts. At later stages, retinal pigmented epithelial cells demonstrated morphological abnormalities and junction ruptures. In diabetic retinas, PGF expression rose between 2 and 5 months, and, one month after ET, rPGF-1 over-expression induced glial activation and proliferation.
CONCLUSION: This is the first demonstration that sustained intraocular PGF production induces vascular and retinal changes similar to those observed in the early stages of diabetic retinopathy. PGF and its receptor Flt-1 may therefore be looked upon as a potential regulatory target at this stage of the disease
Placenta Growth Factor-1 Exerts Time-Dependent Stabilization of Adherens Junctions Following VEGF-Induced Vascular Permeability
Increased vascular permeability is an early event characteristic of tissue ischemia and angiogenesis. Although VEGF family members are potent promoters of endothelial permeability the role of placental growth factor (PlGF) is hotly debated. Here we investigated PlGF isoforms 1 and 2 and present in vitro and in vivo evidence that PlGF-1, but not PlGF-2, can inhibit VEGF-induced permeability but only during a critical window post-VEGF exposure. PlGF-1 promotes VE-cadherin expression via the trans-activating Sp1 and Sp3 interaction with the VE-cadherin promoter and subsequently stabilizes transendothelial junctions, but only after activation of endothelial cells by VEGF. PlGF-1 regulates vascular permeability associated with the rapid localization of VE-cadherin to the plasma membrane and dephosphorylation of tyrosine residues that precedes changes observed in claudin 5 tyrosine phosphorylation and membrane localization. The critical window during which PlGF-1 exerts its effect on VEGF-induced permeability highlights the importance of the translational significance of this work in that PLGF-1 likely serves as an endogenous anti-permeability factor whose effectiveness is limited to a precise time point following vascular injury. Clinical approaches that would pattern nature's approach would thus limit treatments to precise intervals following injury and bring attention to use of agents only during therapeutic windows
Deletion of the Pluripotency-Associated Tex19.1 Gene Causes Activation of Endogenous Retroviruses and Defective Spermatogenesis in Mice
As genetic information is transmitted through successive generations, it passes between pluripotent cells in the early embryo and germ cells in the developing foetus and adult animal. Tex19.1 encodes a protein of unknown function, whose expression is restricted to germ cells and pluripotent cells. During male spermatogenesis, Tex19.1 expression is highest in mitotic spermatogonia and diminishes as these cells differentiate and progress through meiosis. In pluripotent stem cells, Tex19.1 expression is also downregulated upon differentiation. However, it is not clear whether Tex19.1 has an essential function in germ cells or pluripotent stem cells, or what that function might be. To analyse the potential role of Tex19.1 in pluripotency or germ cell function we have generated Tex19.1−/− knockout mice and analysed the Tex19.1−/− mutant phenotype. Adult Tex19.1−/− knockout males exhibit impaired spermatogenesis. Immunostaining and histological analysis revealed defects in meiotic chromosome synapsis, the persistence of DNA double-strand breaks during meiosis, and a loss of post-meiotic germ cells in the testis. Furthermore, expression of a class of endogenous retroviruses is upregulated during meiosis in the Tex19.1−/− testes. Increased transposition of endogenous retroviruses in the germline of Tex19.1−/− mutant mice, and the concomitant increase in DNA damage, may be sufficient to disrupt the normal processes of recombination and chromosome synapsis during meiosis and cause defects in spermatogenesis. Our results suggest that Tex19.1 is part of a specialised mechanism that operates in the germline to repress transposable genetic elements and maintain genomic stability through successive generations
Lysyl hydroxylase 3 localizes to epidermal basement membrane and Is reduced in patients with Recessive Dystrophic Epidermolysis Bullosa
Recessive dystrophic epidermolysis bullosa (RDEB) is caused by mutations in COL7A1 resulting in reduced or absent type VII collagen, aberrant anchoring fibril formation and subsequent dermal-epidermal fragility. Here, we identify a significant decrease in PLOD3 expression and its encoded protein, the collagen modifying enzyme lysyl hydroxylase 3 (LH3), in RDEB. We show abundant LH3 localising to the basement membrane in normal skin which is severely depleted in RDEB patient skin. We demonstrate expression is in-part regulated by endogenous type VII collagen and that, in agreement with previous studies, even small reductions in LH3 expression lead to significantly less secreted LH3 protein. Exogenous type VII collagen did not alter LH3 expression in cultured RDEB keratinocytes and we show that RDEB patients receiving bone marrow transplantation who demonstrate significant increase in type VII collagen do not show increased levels of LH3 at the basement membrane. Our data report a direct link between LH3 and endogenous type VII collagen expression concluding that reduction of LH3 at the basement membrane in patients with RDEB will likely have significant implications for disease progression and therapeutic intervention
Aging Alters Functionally Human Dermal Papillary Fibroblasts but Not Reticular Fibroblasts: A New View of Skin Morphogenesis and Aging
Understanding the contribution of the dermis in skin aging is a key question, since this tissue is particularly important for skin integrity, and because its properties can affect the epidermis. Characteristics of matched pairs of dermal papillary and reticular fibroblasts (Fp and Fr) were investigated throughout aging, comparing morphology, secretion of cytokines, MMPs/TIMPs, growth potential, and interaction with epidermal keratinocytes. We observed that Fp populations were characterized by a higher proportion of small cells with low granularity and a higher growth potential than Fr populations. However, these differences became less marked with increasing age of donors. Aging was also associated with changes in the secretion activity of both Fp and Fr. Using a reconstructed skin model, we evidenced that Fp and Fr cells do not possess equivalent capacities to sustain keratinopoiesis. Comparing Fp and Fr from young donors, we noticed that dermal equivalents containing Fp were more potent to promote epidermal morphogenesis than those containing Fr. These data emphasize the complexity of dermal fibroblast biology and document the specific functional properties of Fp and Fr. Our results suggest a new model of skin aging in which marked alterations of Fp may affect the histological characteristics of skin
- …