11 research outputs found
Genotype by environment effects on promiscuous nodulation in soybean (Glycine max L. Merrill)
Open Access Journal; Published:17 March 2017Background
Understanding factors influencing the expression of a trait is key in designing a breeding program. Genotype by environment interaction has great influence on most quantitative traits. Promiscuous nodulation is a trait of importance for soybean production in Africa, because of the soil bacteria Bradyrhizobium japonicum not being indigenous in most African soils. Most soybean cultivars require B. japonicum for nodulation leading to the need for seed inoculation before sowing soybean in Africa. Few cultivars have capability to nodulate with Bradyrhizobia spp. that are different from B. japonicum and native in African soils. Such cultivars are termed “promiscuous cultivars.” Field experiments were conducted in six locations in Uganda for two seasons, to investigate the extent of environmental influences on the nodulation ability of promiscuous soybean genotypes.
Results
Additive main effect and multiplicative interaction effects showed highly significant environment and genotype by environment (G × E) interaction effects on all nodulation traits. G × E interaction contributed more to the total variation than genotypes. The genotypes Kabanyolo I and WonderSoya were the most stable for nodules’ dry weight (NDW), which is the nodulation trait the most correlated with grain yield. Genotype UG5 was the most stable for nodules’ number (NN), and Nam II for nodules’ effectiveness (NE). The genotype NamSoy 4M had the highest performance for NN, NFW, and NDW, but was less stable. WonderSoya had the highest NE. Genotype and genotype by environment analysis grouped environments into mega-environments (MEs), and four MEs were observed for NDW, with NamSoy 4M the winning genotype in the largest ME, and Kasese B the ideal environment for that nodulation trait.
Conclusion
This study provides information that can guide breeding strategies. The low genetic effect that led to high environmental and G × E interaction effects raised the need for multi-environments testing before cultivar selection and recommendation. The study revealed genotypes that are stable and others that are high performing for nodulation traits, and which can be used as parental lines in breeding programs
Incidence and predictors of hospital readmission in children presenting with severe anaemia in Uganda and Malawi: a secondary analysis of TRACT trial data
Background: Severe anaemia (haemoglobin < 6 g/dL) is a leading cause of recurrent hospitalisation in African children. We investigated predictors of readmission in children hospitalised with severe anaemia in the TRACT trial (ISRCTN84086586) in order to identify potential future interventions.
Methods: Secondary analyses of the trial examined 3894 children from Uganda and Malawi surviving a hospital episode of severe anaemia. Predictors of all-cause readmission within 180 days of discharge were identified using multivariable regression with death as a competing risk. Groups of children with similar characteristics were identified using hierarchical clustering.
Results: Of the 3894 survivors 682 (18%) were readmitted; 403 (10%) had ≥2 re-admissions over 180 days. Three main causes of readmission were identified: severe anaemia (n = 456), malaria (n = 252) and haemoglobinuria/dark urine syndrome (n = 165). Overall, factors increasing risk of readmission included HIV-infection (hazard ratio 2.48
(95% CI 1.63–3.78), p < 0.001); ≥2 hospital admissions in the preceding 12 months (1.44(1.19–1.74), p < 0.001); history of transfusion (1.48(1.13–1.93), p = 0.005); and missing ≥1 trial medication dose (proxy for care quality) (1.43 (1.21–1.69), p < 0.001). Children with uncomplicated severe anaemia (Hb 4-6 g/dL and no severity features),
who never received a transfusion (per trial protocol) during the initial admission had a substantially lower risk of readmission (0.67(0.47–0.96), p = 0.04). Malaria (among children with no prior history of transfusion) (0.60(0.47–0.76), p < 0.001); younger-age (1.07 (1.03–1.10) per 1 year younger, p < 0.001) and known sickle cell disease (0.62(0.46–0.82), p = 0.001) also decreased risk of readmission. For anaemia re-admissions, gross splenomegaly and enlarged spleen increased risk by 1.73(1.23–2.44) and 1.46(1.18–1.82) respectively compared to no splenomegaly.
Clustering identified four groups of children with readmission rates from 14 to 20%. The cluster with the highest readmission rate was characterised by very low haemoglobin (mean 3.6 g/dL). Sickle Cell Disease (SCD) predominated in two clusters associated with chronic repeated admissions or severe, acute presentations in largely undiagnosed SCD. The final cluster had high rates of malaria (78%), severity signs and very low platelet count, consistent with acute severe
malaria.
Conclusions: Younger age, HIV infection and history of previous hospital admissions predicted increased risk of readmission. However, no obvious clinical factors for intervention were identified. As missing medication doses was highly predictive, attention to care related factors may be important.
Trial registration: ISRCTN ISRCTN84086586.
Keywords: Severe anaemia, Readmissio
Gender and the conservation of traditional crop varieties: the case of traditional sorghum in Agago District, Uganda
This study examines the roles men and women play in the cultivation, processing, and marketing of traditional sorghum varieties and gendered trait preferences as they relate to the continued existence of these varieties in Agago District. The study utilized primary data which was collected through a survey and focus group discussions. The results suggest that continued production and utilization of traditional sorghum is as a result of the efforts of both men and women, although the general labor burden fell on women. There was a differential preference for the traditional sorghum characteristics of market, taste, storage, threshing, and milling by gender. Technology advancements in processing ease women’s time constraints and could result in the conservation of difficult-to-process varieties that otherwise possess good traits. Lastly, a gender dimension should be included in future strategies to understand the conservation of varieties as well as the adoption of improved sorghums
Phenotypic Diversity within Ugandan Yam (Dioscorea species) Germplasm Collection
A proper understanding of the diversity of the available germplasm is an initial step for the genetic improvement of a crop through breeding. However, there is limited information on the diversity of Uganda’s yam germplasm. The study sought to characterize the diversity of yam germplasm utilized for decades in Uganda together with germplasm recently introduced from West Africa using phenotypic traits. A germplasm collection of 291 genotypes was characterized using 28 phenotypic traits. Data were subjected to multivariate analysis using principal component analysis and cluster analysis. The traits assessed were informative and discriminating, with 62% of the total variation explained among the first six principal components. Results showed that the important phenotypic traits contributing to most of the variability among the genotypes were leaves, flowering, and tuber traits. Ugandan genotypes were identified with amorphous tuber shapes compared to West African genotypes. The study has shown that there is ample phenotypic variability within the major yam genotypes in Uganda yam germplasm that can be used for genetic improvement. More in-depth molecular and biochemical studies to further understand the diversity are recommended. The preprint was made available by research square in the following link: “https://www.researchsquare.com/article/rs-1518551/v1.
Multi-Environmental Evaluation of Protein Content and Yield Stability among Tropical Soybean Genotypes Using GGE Biplot Analysis
The yield and protein performance in a soybean genotype result from its interaction with the prevailing environmental conditions. This makes selecting the best genotypes under varied target production environments more complex. This study’s objectives were to determine protein content and protein stability of 30 elite soybean genotypes in major soybean-growing areas of Uganda, assess the yield performance and stability in soybeans and determine the relationship between the protein content and grain yield in soybeans. The genotypes were planted in a randomized complete block design of three replications for six seasons across eight locations in Uganda. Genotype and genotype-by-environment (GGE) biplot analyses classified the test locations into three mega-environments for soybean protein and grain yields. Genotype NII X GC 20.3 had the highest mean protein content of 43.0%, and BSPS 48A-9-2 and BSPS 48A-28 were superior for the mean grain yield (1207 kg ha−1). Bulindi was the most discriminating and representative test environment for soybean yield. A weak and negative correlation (r = −0.1**, d.f. = 29) was detected between the protein content (%) and yield (kg ha−1). The highest-yielding genotypes BSPS 48A-9-2, BSPS 48A-31, and Nam II × GC 44.2 are recommended for further evaluation under farmers’ production conditions for selection and release as new soybean varieties in Uganda
Multi-Environmental Evaluation of Protein Content and Yield Stability among Tropical Soybean Genotypes Using GGE Biplot Analysis
The yield and protein performance in a soybean genotype result from its interaction with the prevailing environmental conditions. This makes selecting the best genotypes under varied target production environments more complex. This study’s objectives were to determine protein content and protein stability of 30 elite soybean genotypes in major soybean-growing areas of Uganda, assess the yield performance and stability in soybeans and determine the relationship between the protein content and grain yield in soybeans. The genotypes were planted in a randomized complete block design of three replications for six seasons across eight locations in Uganda. Genotype and genotype-by-environment (GGE) biplot analyses classified the test locations into three mega-environments for soybean protein and grain yields. Genotype NII X GC 20.3 had the highest mean protein content of 43.0%, and BSPS 48A-9-2 and BSPS 48A-28 were superior for the mean grain yield (1207 kg ha−1). Bulindi was the most discriminating and representative test environment for soybean yield. A weak and negative correlation (r = −0.1**, d.f. = 29) was detected between the protein content (%) and yield (kg ha−1). The highest-yielding genotypes BSPS 48A-9-2, BSPS 48A-31, and Nam II × GC 44.2 are recommended for further evaluation under farmers’ production conditions for selection and release as new soybean varieties in Uganda
Volatile organic compound based markers for the aroma trait of rice grain
A study was conducted to determine the volatile organic compounds (VOCs) associated with rice grain aroma in 37 commonly grown lines within Uganda, as well as elites. The aim of the study was to identify potential volatile biochemical markers, if any, for the rice grain aroma trait. Certified rice seeds were obtained from the Uganda National Crops Resources Research Institute germplasm collection. The seeds were sown into experimental plots, under field conditions and the mature paddy harvested. Polished rice grains were heated to 80 oC and the liberated VOCs subjected to untargeted metabolite analysis using gas chromatography-time-of-flight mass spectrometry. In total, nine functional groups were present; hydrocarbons, alcohols, ketones, aldehydes, N-containing compounds, S-containing compounds, esters, oxygen heterocycles and carboxylic acids. More specifically, 148 VOCs were identified across the 37 rice lines, of which 48 (32.4%) including 2-acetyl-1-pyrroline (2-AP) appeared to elucidate the difference between non-aromatic and aromatic rice. Furthermore, 41 (27.7%) VOCs were found to be significantly correlated with 2-AP abundance, the principle rice aroma compound. Amongst the 41 VOCs, only ten compounds were found to contribute highly towards variation in 2-AP abundance, indicative of their possible modulation roles in regard to rice aroma. Within the ten influential volatiles, three aroma active compounds; toluene, 1-hexanol, 2-ethyl and heptane, 2,2,4,6,6-pentamethyl- were established as the most reliable biochemical surrogates to the rice aroma trait. Thus, the aforementioned compounds may be used in rice breeding programme for enhancing development of the grain aroma trait