13 research outputs found

    The Effects of Established Trees on Woody Regeneration during Secondary Succession in Tropical Dry Forests

    Get PDF
    Understanding the mechanisms controlling secondary succession in tropical dry forests is important for the conservation and restoration of this highly threatened biome. Canopy‐forming trees in tropical forests strongly influence later stages of succession through their effect on woody plant regeneration. In dry forests, this may be complex given the seasonal interplay of water and light limitations. We reviewed observational and experimental studies to assess (1) the relative importance of positive and negative effects of established trees on regeneration; (2) the mechanisms underlying these effects; and (3) to test the 'stress gradient hypothesis' in successional tropical dry forests. The effects of established trees on seed dispersal, seed survival, and seed germination—either through direct changes to moisture and temperature regimes or mediated by seed dispersers and predators—are mainly positive. The balance between positive and negative effects on seedling establishment is more complex and depends on the season and leaf phenology of both trees and seedlings. Seedling survival is generally enhanced by established trees mitigating dry conditions. Established trees have counteracting effects on water and light availability that influence seedling growth. The probability of a positive effect of established trees on seedling survival decreases with increased rainfall, which supports the stress gradient hypothesis. Priorities for future research are experiments to test for facilitation and competition and their underlying mechanisms, long‐term studies evaluating how these effects change with ontogeny, and studies focusing on the species‐specificity of interactions

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions. Funding: Bill & Melinda Gates Foundation

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. Findings: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. Interpretation: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. Funding: Bill & Melinda Gates Foundation

    Long-term effects of prescribed early fire, grazing and selective tree cutting on seedling populations in the Sudanian savanna of Burkina Faso

    No full text
    Annual early fire, selective tree cutting and exclusion of grazing are currently used as management tools in the Sudanian savanna of Burkina Faso although their longterm effects on seedling recruitment are poorly documented. A factorial experiment involving fire, grazing and cutting, each with two levels, was established in 1992 to study the effects of these management regimes and their interactions on the regeneration of woody species, and examine whether their effects varied temporally. Species richness, density and the morphology of seedlings were assessed in 1997 and 2002, and their relative changes were determined. The change in species richness of multistemmed individuals was significantly higher (P = 0.018) on plots that received fire • cutting treatment than the control plots. Significantly more species with single-stem were found on unburnt than on burnt plots (P < 0.001). Grazing tended to reduce the change in total density while fire (P < 0.001) and grazing (P = 0.029) significantly reduced the change in density of single-stemmed individuals. Selective cutting did not affect the total seedling density, but tended to reduce the change in single-stemmed seedling density. Principal component analysis revealed species-specific responses to treatments, particularly the relatively high abundance of lianas compared with other species

    Dynamics of sapling population in savanna woodlands of Burkina Faso subjected to grazing, early fire and selective tree cutting for a decade

    No full text
    Fire, grazing, browsing and tree cutting are major anthropogenic determinants of vegetation patterns in African savannas. In Burkina Faso forest management policies prohibit grazing while recommending annual early fire and selective tree cutting of 50% of the merchantable standing volume on a 20-year rotation period. These management prescriptions are not based on long-term experimental evidence, particularly the responses of saplings to these management regimes are not well known. A factorial experiment with two levels was designed to examine the effects of moderate level of grazing, early fire and selective tree cutting on the dynamics of sapling populations on two sites, Laba and Tiogo, in the savanna woodland of Burkina Faso and assessed for 10 years from 1992 to 2002. Species richness, sapling population density, structure and growth were analysed. The results provide evidence that fire, grazing and selective cutting acted independently to influence the population dynamics of saplings. Annual early fire significantly reduced species richness (p = 0.037 in Laba and p = 0.016 in Tiogo), population density (p < 0.001 in Laba and p = 0.003 in Tiogo) and current annual increment (CAI) in basal area (p < 0.001 in Laba and p = 0.016 in Tiogo). Grazing and fire affected sapling morphology but the response was site specific. Selective removal of trees did not affect any of the parameters studied, except the CAI in dominant height at the Tiogo site which was significantly (p = 0.028) reduced by the cutting treatment. Early fire also significantly reduced the CAI in dominant height at Laba. The height class distribution revealed that more than 93% of the saplings recorded were less than 400 cm tall, and fire significantly reduced the rate of change in density of saplings in the 200–400 cm height class. It can be concluded that annual early fire was the factor that most affected sapling recruitment. The sapling response to these management regimes was species specific

    Fuel and fire characteristics in a savanna-woodland of West Africa in relation to grazing and dominant grass type

    No full text
    Fuel characteristics, fire behaviour and temperature were studied in relation to grazing, dominant grass type and wind direction in West African savanna–woodland by lighting 32 prescribed early fires. Grazing significantly reduced the vegetation height, total fuel load, and dead and live fuel fractions whereas plots dominated by perennial grasses had higher values for vegetation height, total fuel load and the quantity of live fuel load. Although fire intensity remained insensitive (P>0.05) to any of these factors, fuel consumption was significantly (P =0.021) reduced by grazing, rate of spread was faster in head fire (P =0.012), and flame length was shorter in head fire than back fire (P =0.044). The average maximum temperature was higher (P<0.05) on non-grazed plots, on plots dominated by annual grasses, on plots subjected to head fire, and at the soil surface. Lethal temperature residence time showed a nearly similar trend to fire temperature.Wind speed and total fuel load were best predictors of fire behaviour parameters (R2 ranging from 0.557 to 0.862). It can be concluded that grazing could be used as a management tool to modify fire behaviour, back fire should be carried out during prescribed burning to lower fire severity, and the fire behaviour models can be employed to guide prescribed early fire in the study area

    Effects of aqueous smoke solutions and heat on seed germination of herbaceous species of the Sudanian savanna-woodland in Burkina Faso

    No full text
    Smoke generated by burning of plant materials has widely been recognized as a germination cue for some species from both fire prone and fire-free ecosystems. It is an important factor for the understanding of vegetation dynamics and could have potential use for ecological management and rehabilitation of disturbed areas. Individual species, however, seem to have a specific requirement for the type and dosage of smoke treatments. In the present study, six different concentrations of smoke solution were tested on 13 herbaceous species by soaking the seeds for 24 h. The germination of a forb species, Borreria scabra, was significantly stimulated (p < 0.05) by the smoke treatment while that of the annual grass species, Euclasta condylotricha, was significantly inhibited (p < 0.05) by 100% smoke solution treatment. Contrary to our expectation that another fire-related cue, heat shock, would break the physical dormancy of the species tested, it was not promotive. For non-dormant seeds of B. scabra and Borreria radiata, high temperatures were lethal while low temperature induced physiological dormancy that was overcome in the former species within 30 days of the germination trial. For some species, responses to smoke did not corroborate with the field-observed response to fire, making ecological interpretation challenging. For responsive species, the smoke treatment could be a simple approach for promoting their re-establishment in areas where it is needed. More investigations are needed to assess the spread of response to smoke

    Effects of aqueous smoke solutions and heat on seed germination of herbaceous species of the Sudanian savanna-woodland in Burkina Faso

    No full text
    Smoke generated by burning of plant materials has widely been recognized as a germination cue for some species from both fire prone and fire-free ecosystems. It is an important factor for the understanding of vegetation dynamics and could have potential use for ecological management and rehabilitation of disturbed areas. Individual species, however, seem to have a specific requirement for the type and dosage of smoke treatments. In the present study, six different concentrations of smoke solution were tested on 13 herbaceous species by soaking the seeds for 24 h. The germination of a forb species, Borreria scabra, was significantly stimulated (p < 0.05) by the smoke treatment while that of the annual grass species, Euclasta condylotricha, was significantly inhibited (p < 0.05) by 100% smoke solution treatment. Contrary to our expectation that another fire-related cue, heat shock, would break the physical dormancy of the species tested, it was not promotive. For non-dormant seeds of B. scabra and Borreria radiata, high temperatures were lethal while low temperature induced physiological dormancy that was overcome in the former species within 30 days of the germination trial. For some species, responses to smoke did not corroborate with the field-observed response to fire, making ecological interpretation challenging. For responsive species, the smoke treatment could be a simple approach for promoting their re-establishment in areas where it is needed. More investigations are needed to assess the spread of response to smoke
    corecore