4 research outputs found

    Mechanical properties and characterization of epoxy composites containing highly entangled as-received and acid treated carbon nanotubes

    Get PDF
    Huntsman–Merrimack MIRALON® carbon nanotubes (CNTs) are a novel, highly entan-gled, commercially available, and scalable format of nanotubes. As-received and acid-treated CNTs were added to aerospace grade epoxy (CYCOM® 977-3), and the composites were characterized. The epoxy resin is expected to infiltrate the network of the CNTs and could improve mechanical properties. Epoxy composites were tested for flexural and viscoelastic properties and the as-re-ceived and acid treated CNTs were characterized using Field-Emission Scanning and Transmission Electron Microscopy, X-Ray Photoelectron Spectroscopy, and Thermogravimetric Analysis. Composites containing 0.4 wt% as-received CNTs showed an increase in flexural strength, from 136.9 MPa for neat epoxy to 147.5 MPa. In addition, the flexural modulus increased from 3.88 GPa for the neat epoxy to 4.24 GPa and 4.49 GPa for the 2.0 wt% and 3.0 wt% as-received CNT/epoxy compo-sites, respectively. FE-SEM micrographs indicated good dispersion of the CNTs in the as-received CNT/epoxy composites and the 10 M nitric acid 6 h treatment at 120 °C CNT/epoxy composites. CNTs treated with 10 M nitric acid for 6 h at 120 °C added oxygen containing functional groups (C– O, C=O, and O=C–O) and removed iron catalyst present on the as-received CNTs, but the flexural properties were not improved compared to the as-received CNT/epoxy composites

    Simple and convenient mapping of molecular dynamics mechanical property predictions of bisphenol-F epoxy for strain rate, temperature, and degree of cure

    No full text
    It is well-known that all-atom molecular dynamics (MD) predictions of mechanical properties of thermoset resins suffer from multiple accuracy issues associated with their viscoelastic nature. The nanosecond simulation times of MD simulations do not allow for the direct simulation of the molecular conformational relaxations that occur under laboratory time scales. This adversely affects the prediction of mechanical properties at realistic strain rates, intermediate degrees of cure, and elevated temperatures. While some recent studies have utilized a time-temperature superposition approach to relate MD predictions to expected laboratory observations, such an approach becomes prohibitively difficult when simulating thermosets with a combination of strain rates, intermediate degrees of cure, and temperatures. In this study, a phenomenological approach is developed to map the predictions of Young\u27s modulus and Poisson\u27s ratio for a DGEBF/DETDA epoxy system to the corresponding laboratory-based properties for intermediate degrees of cure and temperatures above and below the glass transition temperature. The approach uses characterization data from dynamical mechanical analysis temperature sweep experiments. The mathematical formulation and experimental characterization of the mapping is described, and the resulting mapping of computationally-predicted to experimentally-observed elastic properties for various degrees of cure and temperatures are demonstrated and validated. This mapping is particularly important to mitigate the strain-rate effect associated with MD predictions, as well as to accurately predict mechanical properties at elevated temperatures and intermediate degrees of cure to facilitate accurate and efficient composite material process modeling

    Mechanical Properties and Characterization of Epoxy Composites Containing Highly Entangled As-Received and Acid Treated Carbon Nanotubes

    No full text
    Huntsman–Merrimack MIRALON® carbon nanotubes (CNTs) are a novel, highly entangled, commercially available, and scalable format of nanotubes. As-received and acid-treated CNTs were added to aerospace grade epoxy (CYCOM® 977-3), and the composites were characterized. The epoxy resin is expected to infiltrate the network of the CNTs and could improve mechanical properties. Epoxy composites were tested for flexural and viscoelastic properties and the as-received and acid treated CNTs were characterized using Field-Emission Scanning and Transmission Electron Microscopy, X-Ray Photoelectron Spectroscopy, and Thermogravimetric Analysis. Composites containing 0.4 wt% as-received CNTs showed an increase in flexural strength, from 136.9 MPa for neat epoxy to 147.5 MPa. In addition, the flexural modulus increased from 3.88 GPa for the neat epoxy to 4.24 GPa and 4.49 GPa for the 2.0 wt% and 3.0 wt% as-received CNT/epoxy composites, respectively. FE-SEM micrographs indicated good dispersion of the CNTs in the as-received CNT/epoxy composites and the 10 M nitric acid 6 h treatment at 120 °C CNT/epoxy composites. CNTs treated with 10 M nitric acid for 6 h at 120 °C added oxygen containing functional groups (C–O, C=O, and O=C–O) and removed iron catalyst present on the as-received CNTs, but the flexural properties were not improved compared to the as-received CNT/epoxy composites

    Blood-based epigenetic estimators of chronological age in human adults using DNA methylation data from the Illumina MethylationEPIC array

    Get PDF
    BackgroundEpigenetic clocks have been recognized for their precise prediction of chronological age, age-related diseases, and all-cause mortality. Existing epigenetic clocks are based on CpGs from the Illumina HumanMethylation450 BeadChip (450K) which has now been replaced by the latest platform, Illumina MethylationEPIC BeadChip (EPIC). Thus, it remains unclear to what extent EPIC contributes to increased precision and accuracy in the prediction of chronological age.ResultsWe developed three blood-based epigenetic clocks for human adults using EPIC-based DNA methylation (DNAm) data from the Norwegian Mother, Father and Child Cohort Study (MoBa) and the Gene Expression Omnibus (GEO) public repository: 1) an Adult Blood-based EPIC Clock (ABEC) trained on DNAm data from MoBa (n=1592, age-span: 19 to 59years), 2) an extended ABEC (eABEC) trained on DNAm data from MoBa and GEO (n=2227, age-span: 18 to 88years), and 3) a common ABEC (cABEC) trained on the same training set as eABEC but restricted to CpGs common to 450K and EPIC. Our clocks showed high precision (Pearson correlation between chronological and epigenetic age (r)>0.94) in independent cohorts, including GSE111165 (n=15), GSE115278 (n=108), GSE132203 (n=795), and the Epigenetics in Pregnancy (EPIPREG) study of the STORK Groruddalen Cohort (n=470). This high precision is unlikely due to the use of EPIC, but rather due to the large sample size of the training set.ConclusionsOur ABECs predicted adults' chronological age precisely in independent cohorts. As EPIC is now the dominant platform for measuring DNAm, these clocks will be useful in further predictions of chronological age, age-related diseases, and mortality.Peer reviewe
    corecore