55 research outputs found

    Cost-effectiveness of strategies preventing late-onset infection in preterm infants

    Get PDF
    OBJECTIVE: Developing a model to analyse the cost-effectiveness of interventions preventing late-onset infection (LOI) in preterm infants and applying it to the evaluation of anti-microbial impregnated peripherally inserted central catheters (AM-PICCs) compared with standard PICCs (S-PICCs). DESIGN: Model-based cost-effectiveness analysis, using data from the Preventing infection using Antimicrobial Impregnated Long Lines (PREVAIL) randomised controlled trial linked to routine healthcare data, supplemented with published literature. The model assumes that LOI increases the risk of neurodevelopmental impairment (NDI). SETTING: Neonatal intensive care units in the UK National Health Service (NHS). PATIENTS: Infants born ≤32 weeks gestational age, requiring a 1 French gauge PICC. INTERVENTIONS: AM-PICC and S-PICC. MAIN OUTCOME MEASURES: Life expectancy, quality-adjusted life years (QALYs) and healthcare costs over the infants' expected lifetime. RESULTS: Severe NDI reduces life expectancy by 14.79 (95% CI 4.43 to 26.68; undiscounted) years, 10.63 (95% CI 7.74 to 14.02; discounted) QALYs and costs £19 057 (95% CI £14 197; £24697; discounted) to the NHS. If LOI causes NDI, the maximum acquisition price of an intervention reducing LOI risk by 5% is £120. AM-PICCs increase costs (£54.85 (95% CI £25.95 to £89.12)) but have negligible impact on health outcomes (-0.01 (95% CI -0.09 to 0.04) QALYs), compared with S-PICCs. The NHS can invest up to £2.4 million in research to confirm that AM-PICCs are not cost-effective. CONCLUSIONS: The model quantifies health losses and additional healthcare costs caused by NDI and LOI during neonatal care. Given these consequences, interventions preventing LOI, even by a small extent, can be cost-effective. AM-PICCs, being less effective and more costly than S-PICC, are not likely to be cost-effective. TRIAL REGISTRATION NUMBER: NCT03260517

    Implementing two-stage consent pathway in neonatal trials

    Get PDF
    Perinatal trials sometimes require rapid recruitment processes to facilitate inclusion of participants when interventions are time-critical. A two-stage consent pathway has been used in some trials and is supported by national guidance. This pathway includes seeking oral assent for participation during the time-critical period followed by informed written consent later. This approach is being used in the fluids exclusively enteral from day one (FEED1) trial where participants need to be randomised within 3 hours of birth. There is some apprehension about approaching parents for participation via the oral assent pathway. The main reasons for this are consistent with previous research: lack of a written record, lack of standardised information and unfamiliarity with the process. Here, we describe how the pathway has been implemented in the FEED1 trial and the steps the trial team have taken to support sites. We provide recommendations for future trials to consider if they are considering implementing a similar pathway. Trial registration number: ISRCTN89654042

    Establishing a composite neonatal adverse outcome indicator using English hospital administrative data

    Get PDF
    OBJECTIVE: We adapted a composite neonatal adverse outcome indicator (NAOI), originally derived in Australia, and assessed its feasibility and validity as an outcome indicator in English administrative hospital data. DESIGN: We used Hospital Episode Statistics (HES) data containing information infants born in the English National Health Service (NHS) between 1 April 2014 and 31 March 2015. The Australian NAOI was mapped to diagnoses and procedure codes used within HES and modified to reflect data quality and neonatal health concerns in England. To investigate the concurrent validity of the English NAOI (E-NAOI), rates of NAOI components were compared with population-based studies. To investigate the predictive validity of the E-NAOI, rates of readmission and death in the first year of life were calculated for infants with and without E-NAOI components. RESULTS: The analysis included 484 007 (81%) of the 600 963 eligible babies born during the timeframe. 114/148 NHS trusts passed data quality checks and were included in the analysis. The modified E-NAOI included 23 components (16 diagnoses and 7 procedures). Among liveborn infants, 5.4% had at least one E-NAOI component recorded before discharge. Among newborns discharged alive, the E-NAOI was associated with a significantly higher risk of death (0.81% vs 0.05%; p<0.001) and overnight hospital readmission (15.7% vs 7.1%; p<0.001) in the first year of life. CONCLUSIONS: A composite NAOI can be derived from English hospital administrative data. This E-NAOI demonstrates good concurrent and predictive validity in the first year of life. It is a cost-effective way to monitor neonatal outcomes

    Antimicrobial-impregnated central venous catheters for preventing neonatal bloodstream infection: the PREVAIL RCT

    Get PDF
    BACKGROUND: Clinical trials show that antimicrobial-impregnated central venous catheters reduce catheter-related bloodstream infection in adults and children receiving intensive care, but there is insufficient evidence for use in newborn babies. OBJECTIVES: The objectives were (1) to determine clinical effectiveness by conducting a randomised controlled trial comparing antimicrobial-impregnated peripherally inserted central venous catheters with standard peripherally inserted central venous catheters for reducing bloodstream or cerebrospinal fluid infections (referred to as bloodstream infections); (2) to conduct an economic evaluation of the costs, cost-effectiveness and value of conducting additional research; and (3) to conduct a generalisability analysis of trial findings to neonatal care in the NHS. DESIGN: Three separate studies were undertaken, each addressing one of the three objectives. (1) This was a multicentre, open-label, pragmatic randomised controlled trial; (2) an analysis was undertaken of hospital care costs, lifetime cost-effectiveness and value of information from an NHS perspective; and (3) this was a retrospective cohort study of bloodstream infection rates in neonatal units in England. SETTING: The randomised controlled trial was conducted in 18 neonatal intensive care units in England. PARTICIPANTS: Participants were babies who required a peripherally inserted central venous catheter (of 1 French gauge in size). INTERVENTIONS: The interventions were an antimicrobial-impregnated peripherally inserted central venous catheter (coated with rifampicin-miconazole) or a standard peripherally inserted central venous catheter, allocated randomly (1 : 1) using web randomisation. MAIN OUTCOME MEASURE: Study 1 - time to first bloodstream infection, sampled between 24 hours after randomisation and 48 hours after peripherally inserted central venous catheter removal. Study 2 - cost-effectiveness of the antimicrobial-impregnated peripherally inserted central venous catheter compared with the standard peripherally inserted central venous catheters. Study 3 - risk-adjusted bloodstream rates in the trial compared with those in neonatal units in England. For study 3, the data used were as follows: (1) case report forms and linked death registrations; (2) case report forms and linked death registrations linked to administrative health records with 6-month follow-up; and (3) neonatal health records linked to infection surveillance data. RESULTS: Study 1, clinical effectiveness - 861 babies were randomised (antimicrobial-impregnated peripherally inserted central venous catheter, n = 430; standard peripherally inserted central venous catheter, n = 431). Bloodstream infections occurred in 46 babies (10.7%) randomised to antimicrobial-impregnated peripherally inserted central venous catheters and in 44 (10.2%) babies randomised to standard peripherally inserted central venous catheters. No difference in time to bloodstream infection was detected (hazard ratio 1.11, 95% confidence interval 0.73 to 1.67; p = 0.63). Secondary outcomes of rifampicin resistance in positive blood/cerebrospinal fluid cultures, mortality, clinical outcomes at neonatal unit discharge and time to peripherally inserted central venous catheter removal were similar in both groups. Rifampicin resistance in positive peripherally inserted central venous catheter tip cultures was higher in the antimicrobial-impregnated peripherally inserted central venous catheter group (relative risk 3.51, 95% confidence interval 1.16 to 10.57; p = 0.02) than in the standard peripherally inserted central venous catheter group. Adverse events were similar in both groups. Study 2, economic evaluation - the mean cost of babies' hospital care was £83,473. Antimicrobial-impregnated peripherally inserted central venous catheters were not cost-effective. Given the increased price, compared with standard peripherally inserted central venous catheters, the minimum reduction in risk of bloodstream infection for antimicrobial-impregnated peripherally inserted central venous catheters to be cost-effective was 3% and 15% for babies born at 23-27 and 28-32 weeks' gestation, respectively. Study 3, generalisability analysis - risk-adjusted bloodstream infection rates per 1000 peripherally inserted central venous catheter days were similar among babies in the trial and in all neonatal units. Of all bloodstream infections in babies receiving intensive or high-dependency care in neonatal units, 46% occurred during peripherally inserted central venous catheter days. LIMITATIONS: The trial was open label as antimicrobial-impregnated and standard peripherally inserted central venous catheters are different colours. There was insufficient power to determine differences in rifampicin resistance. CONCLUSIONS: No evidence of benefit or harm was found of peripherally inserted central venous catheters impregnated with rifampicin-miconazole during neonatal care. Interventions with small effects on bloodstream infections could be cost-effective over a child's life course. Findings were generalisable to neonatal units in England. Future research should focus on other types of antimicrobial impregnation of peripherally inserted central venous catheters and alternative approaches for preventing bloodstream infections in neonatal care. TRIAL REGISTRATION: Current Controlled Trials ISRCTN81931394. FUNDING: This project was funded by the National Institute for Health Research Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 24, No. 57. See the NIHR Journals Library website for further project information

    Antimicrobial-impregnated central venous catheters for prevention of neonatal bloodstream infection (PREVAIL): an open-label, parallel-group, pragmatic, randomised controlled trial

    Get PDF
    Background Bloodstream infection is associated with high mortality and serious morbidity in preterm babies. Evidence from clinical trials shows that antimicrobial-impregnated central venous catheters (CVCs) reduce catheterrelated bloodstream infection in adults and children receiving intensive care, but there is a paucity of similar evidence for babies receiving neonatal intensive care. Methods This open-label, parallel-group, pragmatic, randomised controlled trial was done in 18 neonatal intensive care units in England. Newborn babies who needed a peripherally inserted CVC (PICC) were allocated randomly (1:1) to receive either a PICC impregnated with miconazole and rifampicin or a standard (non-antimicrobial-impregnated) PICC. Random allocation was done with a web-based program, which was centrally controlled to ensure allocation concealment. Randomisation sequences were computer-generated in random blocks of two and four, and stratified by site. Masking of clinicians to PICC allocation was impractical because rifampicin caused brown staining of the antimicrobial-impregnated PICC. However, participant inclusion in analyses and occurrence of outcome events were determined following an analysis plan that was specified before individuals saw the unblinded data. The primary outcome was the time from random allocation to first microbiologically confirmed bloodstream or cerebrospinal fluid (CSF) infection between 24 h after randomisation and 48 h after PICC removal or death. We analysed outcome data according to the intention-to-treat principle. We excluded babies for whom a PICC was not inserted from safety analyses, as these analyses were done with groups defined by the PICC used. This trial is registered with ISRCTN, number 81931394. Findings Between Aug 12, 2015, and Jan 11, 2017, we randomly assigned 861 babies (754 [88%] born before 32 weeks of gestation) to receive an antimicrobial-impregnated PICC (430 babies) or standard PICC (431 babies). The median time to PICC removal was 8·20 days (IQR 4·77–12·13) in the antimicrobial-impregnated PICC group versus 7·86 days (5·00–12·53) days in the standard PICC group (hazard ratio [HR] 1·03, 95% CI 0·89–1·18, p=0·73), with 46 (11%) of 430 babies versus 44 (10%) of 431 babies having a microbiologically confirmed bloodstream or CSF infection. The time from random allocation to first bloodstream or CSF infection was similar between the two groups (HR 1·11, 95% CI 0·73–1·67, p=0·63). Secondary outcomes relating to infection, rifampicin resistance in positive blood or CSF cultures, mortality, clinical outcomes at neonatal unit discharge, and time to PICC removal were similar between the two groups, although rifampicin resistance in positive cultures of PICC tips was higher in the antimicrobial-impregnated PICC group (relative risk 3·51, 95% CI 1·16–10·57, p=0·018). 60 adverse events were reported from 49 (13%) patients in the antimicrobial-impregnated PICC group and 50 events from 45 (10%) babies in the standard PICC group. Interpretation We found no evidence of benefit or harm associated with miconazole and rifampicin-impregnated PICCs compared with standard PICCs for newborn babies. Future research should focus on other types of antimicrobial impregnation of PICCs and alternative approaches for preventing infection

    Placental transfusion: a review

    Get PDF
    Recently there have been a number of studies and presentations on the importance of providing a placental transfusion to the newborn. Early cord clamping is an avoidable, unphysiologic intervention that prevents the natural process of placental transfusion. However, placental transfusion, although simple in concept, is affected by multiple factors, is not always straightforward to implement, and can be performed using different methods, making this basic procedure important to discuss. Here, we review three placental transfusion techniques: delayed cord clamping, intact umbilical cord milking and cut-umbilical cord milking, and the evidence in term and preterm newborns supporting this practice. We will also review several factors that influence placental transfusion, and discuss perceived risks versus benefits of this procedure. Finally, we will provide key straightforward concepts and implementation strategies to ensure that placental-to-newborn transfusion can become routine practice at any institution

    Maternal condition but not corticosterone is linked to brood sex ratio adjustment in a passerine bird

    Get PDF
    There is evidence of offspring sex ratio adjustment in a range of species, but the potential mechanisms remain largely unknown. Elevated maternal corticosterone (CORT) is associated with factors that can favour brood sex ratio adjustment, such as reduced maternal condition, food availability and partner attractiveness. Therefore, the steroid hormone has been suggested to play a key role in sex ratio manipulation. However, despite correlative and causal evidence CORT is linked to sex ratio manipulation in some avian species, the timing of adjustment varies between studies. Consequently, whether CORT is consistently involved in sex-ratio adjustment, and how the hormone acts as a mechanism for this adjustment remains unclear. Here we measured maternal baseline CORT and body condition in free-living blue tits (Cyanistes caeruleus) over three years and related these factors to brood sex ratio and nestling quality. In addition, a non-invasive technique was employed to experimentally elevate maternal CORT during egg laying, and its effects upon sex ratio and nestling quality were measured. We found that maternal CORT was not correlated with brood sex ratio, but mothers with elevated CORT fledged lighter offspring. Also, experimental elevation of maternal CORT did not influence brood sex ratio or nestling quality. In one year, mothers in superior body condition produced male biased broods, and maternal condition was positively correlated with both nestling mass and growth rate in all years. Unlike previous studies maternal condition was not correlated with maternal CORT. This study provides evidence that maternal condition is linked to brood sex ratio manipulation in blue tits. However, maternal baseline CORT may not be the mechanistic link between the maternal condition and sex ratio adjustment. Overall, this study serves to highlight the complexity of sex ratio adjustment in birds and the difficulties associated with identifying sex biasing mechanisms
    corecore