21 research outputs found

    Visualising Co nanoparticle aggregation and encapsulation in Co/TiO2 catalysts and its mitigation through surfactant residues

    Get PDF
    Due to the reducible nature of TiO2, the encapsulation of cobalt nanoparticles (CoNPs) by reduced TiO2-x is often reported to decrease their catalytic performance in reactions such as Fisher-Tropsch synthesis (FTS). Here, we show using HAADF-STEM imaging and electron energy loss spectroscopy (EELS) that a residual C12E4 surfactant used to prepare the CoNPs, remains on the surface of a TiO2 rutile support, preventing the formation of Ti3+/Ti2+ oxides and therefore TiO2-x migration. Furthermore, the presence of these surfactant residues prevents the coalescence and aggregation of CoNPs during catalyst preparation, maintaining the dispersion of CoNPs. As such, using C12E4 in the preparation of Co/TiO2 can be considered beneficial for producing a catalyst with a greater number of active Co species

    Visualising Co nanoparticle aggregation and encapsulation in Co/TiO2 catalysts and its mitigation through surfactant residues

    Get PDF
    Due to the reducible nature of TiO2, the encapsulation of cobalt nanoparticles (CoNPs) by reduced TiO2-x is often reported to decrease their catalytic performance in reactions such as Fisher-Tropsch synthesis (FTS). Here, we show using HAADF-STEM imaging and electron energy loss spectroscopy (EELS) that a residual C12E4 surfactant used to prepare the CoNPs, remains on the surface of a TiO2 rutile support, preventing the formation of Ti3+/Ti2+ oxides and therefore TiO2-x migration. Furthermore, the presence of these surfactant residues prevents the coalescence and aggregation of CoNPs during catalyst preparation, maintaining the dispersion of CoNPs. As such, using C12E4 in the preparation of Co/TiO2 can be considered beneficial for producing a catalyst with a greater number of active Co species

    Reversible restructuring of supported Au nanoparticles during butadiene hydrogenation revealed by operando GISAXS/GIWAXS

    Get PDF
    Periodically arranged, monodisperse gold nanoparticles supported on flat silicon substrates were studied for the hydrogenation of 1,3-butadiene under operando conditions using Grazing Incidence Small- and Wide-Angle X-ray Scattering (GISAXS/GIWAXS). It was found that the composition and shape of the nanoparticles depends very much on the chemical environment; the particles are shown to be dynamic, undergoing reversible size and shape change particularly during catalytic reaction, highlighting a dynamism often not observed in traditional studies. Specifically, the size of the Au nanoparticles increases during butadiene hydrogenation and this is attributed to the partial removal of a Au2O3 at the metal–oxide interface and consequential shape change of the nanoparticle from a more hemispherical particle to a particle with a larger height to width ratio

    Resolving the effect of oxygen vacancies on Co nanostructures using soft XAS/X-PEEM

    Get PDF
    Improving both the extent of metallic Co nanoparticle (Co NP) formation and their stability is necessary to ensure good catalytic performance, particularly for Fischer–Tropsch synthesis (FTS). Here, we observe how the presence of surface oxygen vacancies (Ovac) on TiO2 can readily reduce individual Co3O4 NPs directly into CoO/Co0 in the freshly prepared sample by using a combination of X-ray photoemission electron microscopy (X-PEEM) coupled with soft X-ray absorption spectroscopy. The Ovac are particularly good at reducing the edge of the NPs as opposed to their center, leading to smaller particles being more reduced than larger ones. We then show how further reduction (and Ovac consumption) is achieved during heating in H2/syngas (H2 + CO) and reveal that Ovac also prevents total reoxidation of Co NPs in syngas, particularly the smallest (∼8 nm) particles, thus maintaining the presence of metallic Co, potentially improving catalyst performance

    Adapter la structure mésoscopique et l'orientation des polymères semi-cristallins et des polymères de cristaux liquides : confinement à 1D et 2D

    No full text
    Controlling the micro-structure of organic materials is crucial for a variety of practical applications such as photonics, biomedicine or the rapidly growing field of organic electronics. Recent studies have shown a possibility of tailoring the polymer structure on the nanoscale using supramolecular self-assembly under spatial confinement. Despite extensive studies already performed in this field, many questions remain open. In particular, it will be important to understand how different structure formation processes such as crystallization, LC-phase formation, microphase separation, and others occur under confinement. In the present work, we address the effect of 1D- and 2D-confinement on the structure formation for a variety of systems including segmented poly(ether-ester-amide) (PEEA) copolymers, main-chain liquid-crystalline (LC) polymers belonging to the family of poly(di-n-alkylsiloxane)s and liquid-crystalline/semicrystalline block copolymers formed through complexation of poly (2-vinylpyridine-b-ethylene oxide) (P2VP-PEO) with a wedge-shaped ligand, 4'-(3'',4'',5''-tris(octyloxy) benzamido) propanoic acid. In order to reveal the morphological diversity of the studied systems under confinement, the work was carried out on bulk materials and on thin films employing a battery of experimental methods. The main experimental techniques operational in direct and reciprocal space applied in my work are described in chapter 2. [...]Le contrôle de la microstructure des matériaux organiques est crucial pour des applications pratiques telles que la photonique, la biomédecine ou encore le domaine très dynamique de l'électronique organique. Les études récentes ont montré une possibilité de contrôler la structure des polymères à l'échelle nanométrique en utilisant l'auto-assemblage supramoléculaire sous confinement spatial. Bien que de nombreuses études ont déjà été effectuées dans ce domaine, plusieurs questions essentielles restent ouvertes. En particulier, il est important de comprendre comment les différents processus de formation structurale tels que la cristallisation, la formation d`une phase cristal liquide et la séparation de phases se déroulent sous confinement. Dans le présent travail, nous abordons l'effet du confinement à 1D et à 2D sur la formation de la structure pour une variété de systèmes, y compris les copolymères segmentés de poly(éther-ester-amide) (PEEA), les polymères cristaux liquides (CL) dont la chaîne principale appartient à la famille des poly(di-n-alkylsiloxane)s et des copolymères à bloc cristaux-liquides /semicristallins formés par complexation de poly(2-vinylpyridine-b-oxyde d'éthylène) (P2VP-PEO) avec un ligand cunéiforme, l'acide 4'-(3'',4'',5''-tris(octyloxy) benzamido) propanoïque. Pour être capable de traiter de façon adéquate la morphologie complexe de ces systèmes sous confinement, le travail a été effectué en utilisant une batterie de méthodes expérimentales. Les techniques principales opérationnelles dans l'espace direct et réciproque que nous avons employées sont décrites dans le chapitre 2. [...

    Assessing Fast Structure Formation Processes in Isotactic Polypropylene with a Combination of Nanofocus X-ray Diffraction and In Situ Nanocalorimetry

    No full text
    International audienceA combination of in situ nanocalorimetry with simultaneous nanofocus 2D Wide-Angle X-ray Scattering (WAXS) was used to study polymorphic behaviour and structure formation in a single micro-drop of isotactic polypropylene (iPP) with defined thermal history. We were able to generate, detect, and characterize a number of different iPP morphologies using our custom-built ultrafast chip-based nanocalorimetry instrument designed for use with the European Synchrotron Radiation Facility (ESRF) high intensity nanofocus X-ray beamline facility. The detected iPP morphologies included monoclinic alpha-phase crystals, mesophase, and mixed morphologies with different mesophase/crystalline compositional ratios. Monoclinic crystals formed from the mesophase became unstable at heating rates above 40 K s−1 and showed melting temperatures as low as ~30 K below those measured for iPP crystals formed by slow cooling. We also studied the real-time melt crystallization of nanogram-sized iPP samples. Our analysis revealed a mesophase nucleation time of around 1 s and the co-existence of mesophase and growing disordered crystals at high supercooling ≤328 K. The further increase of the iPP crystallization temperature to 338 K changed nucleation from homogeneous to heterogeneous. No mesophase was detected above 348 K. Low supercooling (≥378 K) led to the continuous growth of the alpha-phase crystals. In conclusion, we have, for the first time, measured the mesophase nucleation time of supercooled iPP melted under isothermal crystallization conditions using a dedicated experimental setup designed to allow simultaneous ultrafast chip-based nanocalorimetry and nanofocus X-ray diffraction analyses. We also provided experimental evidence that upon heating, the mesophase converts directly into thermodynamically stable monoclinic alpha-phase crystals via perfection and reorganization and not via partial melting. The complex phase behaviour of iPP and its dependence on both crystallization temperature and time is presented here using a time–temperature–transformation (TTT) diagra

    Concurrent Order in a Semi-Crystalline Diblock Copolymer Involving Complexation with a Mesogen

    No full text
    A semicrystalline/liquid-crystalline diblock copolymer formed by complexation of a wedge-shaped ligand, 2-(3′,4′,5′-tris(octyloxy)benzamido)propanoic acid, with P2VP–PEO copolymer was studied. The P2VP complex forms layers with a liquid-crystalline (LC) order causing phase segregation of the PEO block. The molar ratio ligand/pyridine (x) determines the strength of segregation between the blocks and the microphase morphology. For x ≥ 0.5, PEO forms cylinders within the LC matrix. The phase separation strongly shifts the crystallization temperature to lower values and forces PEO to crystallize within the block copolymer cylinders. In thin films, alignment of the smectic layers parallel to the substrate induces homeotropic orientation of the PEO cylinders. Inside these cylinders, the crystalline stems preferentially orient along the smectic normal. For x ≤ 0.33, PEO forms crystalline lamellae within the LC matrix and crystallization dominates the final structure
    corecore