248 research outputs found

    Molecular Dynamics Simulation Study of Nonconcatenated Ring Polymers in a Melt: I. Statics

    Full text link
    Molecular dynamics simulations were conducted to investigate the structural properties of melts of nonconcatenated ring polymers and compared to melts of linear polymers. The longest rings were composed of N=1600 monomers per chain which corresponds to roughly 57 entanglement lengths for comparable linear polymers. For the rings, the radius of gyration squared was found to scale as N to the 4/5 power for an intermediate regime and N to the 2/3 power for the larger rings indicating an overall conformation of a crumpled globule. However, almost all beads of the rings are "surface beads" interacting with beads of other rings, a result also in agreement with a primitive path analysis performed in the following paper (DOI: 10.1063/1.3587138). Details of the internal conformational properties of the ring and linear polymers as well as their packing are analyzed and compared to current theoretical models.Comment: 15 pages, 14 figure

    Long-lived neutral-kaon flux measurement for the KOTO experiment

    Get PDF
    The KOTO (K0K^0 at Tokai) experiment aims to observe the CP-violating rare decay KLπ0ννˉK_L \rightarrow \pi^0 \nu \bar{\nu} by using a long-lived neutral-kaon beam produced by the 30 GeV proton beam at the Japan Proton Accelerator Research Complex. The KLK_L flux is an essential parameter for the measurement of the branching fraction. Three KLK_L neutral decay modes, KL3π0K_L \rightarrow 3\pi^0, KL2π0K_L \rightarrow 2\pi^0, and KL2γK_L \rightarrow 2\gamma were used to measure the KLK_L flux in the beam line in the 2013 KOTO engineering run. A Monte Carlo simulation was used to estimate the detector acceptance for these decays. Agreement was found between the simulation model and the experimental data, and the remaining systematic uncertainty was estimated at the 1.4\% level. The KLK_L flux was measured as (4.183±0.017stat.±0.059sys.)×107(4.183 \pm 0.017_{\mathrm{stat.}} \pm 0.059_{\mathrm{sys.}}) \times 10^7 KLK_L per 2×10142\times 10^{14} protons on a 66-mm-long Au target.Comment: 27 pages, 16 figures. To be appeared in Progress of Theoretical and Experimental Physic

    ARG098, a novel anti-human Fas antibody, suppresses synovial hyperplasia and prevents cartilage destruction in a severe combined immunodeficient-HuRAg mouse model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The anti-human Fas/APO-1/CD95 (Fas) mouse/human chimeric monoclonal IgM antibody ARG098 (ARG098) targets the human Fas molecule. The cytotoxic effects of ARG098 on cells isolated from RA patients, on normal cells <it>in vitro</it>, and on RA synovial tissue and cartilage <it>in vivo </it>using implanted rheumatoid tissues in an SCID mouse model (SCID-HuRAg) were investigated to examine the potential of ARG098 as a therapy for RA.</p> <p>Methods</p> <p>ARG098 binding to each cell was analyzed by cytometry. The effects of ARG098 on several cells were assessed by a cell viability assay <it>in vitro</it>. Effects on the RA synovium, lymphocytes, and cartilage were assessed <it>in vivo </it>using the SCID-HuRAg mouse model.</p> <p>Results</p> <p>ARG098 bound to cell surface Fas molecules, and induced apoptosis in Fas-expressing RA synoviocytes and infiltrating lymphocytes in the RA synovium in a dose-dependent manner. However, ARG098 did not affect the cell viability of peripheral blood mononuclear cells of RA patients or normal chondrocytes. ARG098 also induced apoptosis in RA synoviocytes and infiltrating lymphocytes in the RA synovium <it>in vivo</it>. The destruction of cartilage due to synovial invasion was inhibited by ARG098 injection in the modified SCID-HuRAg mouse model.</p> <p>Conclusions</p> <p>ARG098 treatment suppressed RA synovial hyperplasia through the induction of apoptosis and prevented cartilage destruction <it>in vivo</it>. These results suggest that ARG098 might become a new therapy for RA.</p

    Scalable Purification and Characterization of the Anticancer Lunasin Peptide from Soybean

    Get PDF
    Lunasin is a peptide derived from the soybean 2S albumin seed protein that has both anticancer and anti-inflammatory activities. Large-scale animal studies and human clinical trials to determine the efficacy of lunasin in vivo have been hampered by the cost of synthetic lunasin and the lack of a method for obtaining gram quantities of highly purified lunasin from plant sources. The goal of this study was to develop a large-scale method to generate highly purified lunasin from defatted soy flour. A scalable method was developed that utilizes the sequential application of anion-exchange chromatography, ultrafiltration, and reversed-phase chromatography. This method generates lunasin preparations of >99% purity with a yield of 442 mg/kg defatted soy flour. Mass spectrometry of the purified lunasin revealed that the peptide is 44 amino acids in length and represents the original published sequence of lunasin with an additional C-terminal asparagine residue. Histone-binding assays demonstrated that the biological activity of the purified lunasin was similar to that of synthetic lunasin. This study provides a robust method for purifying commercial-scale quantities of biologically-active lunasin and clearly identifies the predominant form of lunasin in soy flour. This method will greatly facilitate the development of lunasin as a potential nutraceutical or therapeutic anticancer agent

    Recent and historical recombination in the admixed Norwegian Red cattle breed

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comparison of recent patterns of recombination derived from linkage maps to historical patterns of recombination from linkage disequilibrium (LD) could help identify genomic regions affected by strong artificial selection, appearing as reduced recent recombination. Norwegian Red cattle (NRF) make an interesting case study for investigating these patterns as it is an admixed breed with an extensively recorded pedigree. NRF have been under strong artificial selection for traits such as milk and meat production, fertility and health.</p> <p>While measures of LD is also crucial for determining the number of markers required for association mapping studies, estimates of recombination rate can be used to assess quality of genomic assemblies.</p> <p>Results</p> <p>A dataset containing more than 17,000 genome-wide distributed SNPs and 2600 animals was used to assess recombination rates and LD in NRF. Although low LD measured by r<sup>2 </sup>was observed in NRF relative to some of the breeds from which this breed originates, reports from breeds other than those assessed in this study have described more rapid decline in r<sup>2 </sup>at short distances than what was found in NRF. Rate of decline in r<sup>2 </sup>for NRF suggested that to obtain an expected r<sup>2 </sup>between markers and a causal polymorphism of at least 0.5 for genome-wide association studies, approximately one SNP every 15 kb or a total of 200,000 SNPs would be required. For well known quantitative trait loci (QTLs) for milk production traits on <it>Bos Taurus </it>chromosomes 1, 6 and 20, map length based on historic recombination was greater than map length based on recent recombination in NRF.</p> <p>Further, positions for 130 previously unpositioned contigs from assembly of the bovine genome sequence (Btau_4.0) found using comparative sequence analysis were validated by linkage analysis, and 28% of these positions corresponded to extreme values of population recombination rate.</p> <p>Conclusion</p> <p>While LD is reduced in NRF compared to some of the breeds from which this admixed breed originated, it is elevated over short distances compared to some other cattle breeds. Genomic regions in NRF where map length based on historic recombination was greater than map length based on recent recombination coincided with some well known QTL regions for milk production traits.</p> <p>Linkage analysis in combination with comparative sequence analysis and detection of regions with extreme values of population recombination rate proved to be valuable for detecting problematic regions in the Btau_4.0 genome assembly.</p

    Development and Evaluation of a Novel 99mTc-Labeled Annexin A5 for Early Detection of Response to Chemotherapy

    Get PDF
    99mTc-HYNIC-annexin A5 can be considered as a benchmark in the field of apoptosis imaging. However, 99mTc-HYNIC-annexin A5 has characteristics of high uptake and long retention in non-target tissues such as kidney and liver. To minimize this problem, we developed a novel 99mTc-labeled annexin A5 using a bis(hydroxamamide) derivative [C3(BHam)2] as a bifunctional chelating agent, and evaluated its usefulness as an imaging agent for detecting apoptosis. The amino group of C3(BHam)2 was converted to a maleimide group, and was coupled to thiol groups of annexin A5 pretreated with 2-iminothiolane. 99mTc labeling was performed by a ligand exchange reaction with 99mTc-glucoheptonate. Biodistribution experiments for both 99mTc-C3(BHam)2-annexin A5 and 99mTc-HYNIC-annexin A5 were performed in normal mice. In addition, in tumor-bearing mice, the relationship between the therapeutic effects of chemotherapy (5-FU) and the tumor accumulation of 99mTc-C 3(BHam)2-annexin A5 just after the first treatment of 5-FU was evaluated. 99mTc-C3(BHam)2-annexin A5 was prepared with a radiochemical purity of over 95%. In biodistribution experiments, 99mTc-C3(BHam)2-annexin A5 had a much lower kidney accumulation of radioactivity than 99mTc-HYNIC- annexin A5. In the organs for metabolism, such as liver and kidney, radioactivity after the injection of 99mTc-HYNIC-annexin A5 was residual for a long time. On the other hand, radioactivity after the injection of 99mTc-C3(BHam)2-annexin A5 gradually decreased. In therapeutic experiments, tumor growth in the mice treated with 5-FU was significantly inhibited. Accumulation of 99mTc-C 3(BHam)2-annexin A5 in tumors significantly increased after 5-FU treatment. The accumulation of radioactivity in tumor correlated positively with the counts of TUNEL-positive cells. These findings suggest that 99mTc-C3(BHam)2-annexin A5 may contribute to the efficient detection of apoptotic tumor response after chemotherapy

    Endophytes vs tree pathogens and pests: can they be used as biological control agents to improve tree health?

    Get PDF
    Like all other plants, trees are vulnerable to attack by a multitude of pests and pathogens. Current control measures for many of these diseases are limited and relatively ineffective. Several methods, including the use of conventional synthetic agro-chemicals, are employed to reduce the impact of pests and diseases. However, because of mounting concerns about adverse effects on the environment and a variety of economic reasons, this limited management of tree diseases by chemical methods is losing ground. The use of biological control, as a more environmentally friendly alternative, is becoming increasingly popular in plant protection. This can include the deployment of soil inoculants and foliar sprays, but the increased knowledge of microbial ecology in the phytosphere, in particular phylloplane microbes and endophytes, has stimulated new thinking for biocontrol approaches. Endophytes are microbes that live within plant tissues. As such, they hold potential as biocontrol agents against plant diseases because they are able to colonize the same ecological niche favoured by many invading pathogens. However, the development and exploitation of endophytes as biocontrol agents will have to overcome numerous challenges. The optimization and improvement of strategies employed in endophyte research can contribute towards discovering effective and competent biocontrol agents. The impact of environment and plant genotype on selecting potentially beneficial and exploitable endophytes for biocontrol is poorly understood. How endophytes synergise or antagonise one another is also an important factor. This review focusses on recent research addressing the biocontrol of plant diseases and pests using endophytic fungi and bacteria, alongside the challenges and limitations encountered and how these can be overcome. We frame this review in the context of tree pests and diseases, since trees are arguably the most difficult plant species to study, work on and manage, yet they represent one of the most important organisms on Earth
    corecore