284 research outputs found

    The impact of binary-star yields on the spectra of galaxies

    Get PDF
    One of the complexities in modelling integrated spectra of stellar populations is the effect of interacting binary stars besides Type Ia supernovae (SNeIa). These include common envelope systems, cataclysmic variables, novae, and are usually ignored in models predicting the chemistry and spectral absorption line strengths in galaxies. In this paper, predictions of chemical yields from populations of single and binary stars are incorporated into a galactic chemical evolution model to explore the significance of the effects of these other binary yields. Effects on spectral line strengths from different progenitor channels of SNeIa are also explored. Small systematic effects are found when the yields from binaries, other than SNeIa, are included, for a given star formation history. These effects are, at present, within the observational uncertainties on the line strengths. More serious differences can arise in considering different types of SNIa models, their rates and contributions

    Perturbation Theory of Intermolecular Forces Using an »Effective« Hamiltonian

    Get PDF
    Recently H. Ezawa and M. Lu ban 1 proposed a:n interesting approach for the diagonalization of th e Hamiltonian describing two interacting systems. The main idea is this: with the knowledge of one of the Hamiltonian describing system A one can construct an effective Hamiltonian for the system B with respect to its interaction with the subsystem A

    Perturbation Theory of Intermolecular Forces Using an »Effective« Hamiltonian

    Get PDF
    Recently H. Ezawa and M. Lu ban 1 proposed a:n interesting approach for the diagonalization of th e Hamiltonian describing two interacting systems. The main idea is this: with the knowledge of one of the Hamiltonian describing system A one can construct an effective Hamiltonian for the system B with respect to its interaction with the subsystem A

    Application of the Screened Coulomb Potential to the Molecular System (H2)

    Get PDF
    The electronic correlation in atoms and molecules is the main problem of the ab-initio calculations. There are many methods that include the correlation between electrons

    Vast planes of satellites in a high resolution simulation of the Local Group: comparison to Andromeda

    Full text link
    We search for vast planes of satellites (VPoS) in a high resolution simulation of the Local Group performed by the CLUES project, which improves significantly the resolution of former similar studies. We use a simple method for detecting planar configurations of satellites, and validate it on the known plane of M31. We implement a range of prescriptions for modelling the satellite populations, roughly reproducing the variety of recipes used in the literature, and investigate the occurence and properties of planar structures in these populations. The structure of the simulated satellite systems is strongly non-random and contains planes of satellites, predominantly co-rotating, with, in some cases, sizes comparable to the plane observed in M31 by Ibata et al.. However the latter is slightly richer in satellites, slightly thinner and has stronger co-rotation, which makes it stand out as overall more exceptional than the simulated planes, when compared to a random population. Although the simulated planes we find are generally dominated by one real structure, forming its backbone, they are also partly fortuitous and are thus not kinematically coherent structures as a whole. Provided that the simulated and observed planes of satellites are indeed of the same nature, our results suggest that the VPoS of M31 is not a coherent disc and that one third to one half of its satellites must have large proper motions perpendicular to the plane

    High resolution simulations of the reionization of an isolated Milky Way - M31 galaxy pair

    Full text link
    We present the results of a set of numerical simulations aimed at studying reionization at galactic scale. We use a high resolution simulation of the formation of the Milky Way-M31 system to simulate the reionization of the local group. The reionization calculation was performed with the post-processing radiative transfer code ATON and the underlying cosmological simulation was performed as part of the CLUES project. We vary the source models to bracket the range of source properties used in the literature. We investigate the structure and propagation of the galatic ionization fronts by a visual examination of our reionization maps. Within the progenitors we find that reionization is patchy, and proceeds locally inside out. The process becomes patchier with decreasing source photon output. It is generally dominated by one major HII region and 1-4 additional isolated smaller bubbles, which eventually overlap. Higher emissivity results in faster and earlier local reionization. In all models, the reionization of the Milky Way and M31 are similar in duration, i.e. between 203 Myr and 22 Myr depending on the source model, placing their zreion between 8.4 and 13.7. In all models except the most extreme, the MW and M31 progenitors reionize internally, ignoring each other, despite being relatively close to each other even during the epoch of reionization. Only in the case of strong supernova feedback suppressing star formation in haloes less massive than 10^9 M_sun, and using our highest emissivity, we find that the MW is reionized by M31.Comment: Accepted for publication in ApJ. 14 pages, 4 figures, 1 tabl

    Excitation and Wave Function of a Molecular System in RPA

    Get PDF
    The random phase approximation (RPA) is very successful in describing the behaviour of nuclei (for references see1). The RPA has been applied to a molecular system very recently2• The aim of our work is to describe a different way of obtaining the set of equations describing the excitation in a molecular sistem. The discussion of the wave function is als o inclu,ded
    corecore