10 research outputs found

    Most super-Earths formed by dry pebble accretion are less massive than 5 Earth masses

    Get PDF
    We study the formation of rocky planets by dry pebble accretion from self-consistent dust-growth models. In particular, we aim at computing the maximum core mass of a rocky planet that can sustain a thin H-He atmosphere to account for the second peak of the Kepler's size distribution. We simulate planetary growth by pebble accretion inside the ice line. The pebble flux is computed self-consistently from dust growth by solving the advection-diffusion equation for a representative dust size. Dust coagulation, drift, fragmentation and sublimation at the water iceline are included. The disc evolution is computed for α\alpha-discs with photoevaporation from the central star. The planets grow from a moon-mass embryo by silicate pebble accretion and gas accretion. We analyse the effect of a different initial disc mass, α\alpha-viscosity, disc metallicity and embryo location. Finally, we compute atmospheric mass-loss due to evaporation. We find that inside the ice line, the fragmentation barrier determines the size of pebbles, which leads to different planetary growth patterns for different disc viscosities. Within the iceline the pebble isolation mass typically decays to values below 5 M⊕_{\oplus} within the first million years of disc evolution, limiting the core masses to that value. After computing atmospheric-mass loss, we find that planets with cores below ∼\sim4 M⊕_{\oplus} get their atmospheres completely stripped, and a few 4-5 M⊕_{\oplus} cores retain a thin atmosphere that places them in the gap/second peak of the Kepler size distribution. Overall, we find that rocky planets form only in low-viscosity discs (α≲10−4\alpha \lesssim 10^{-4}). When α≥10−3\alpha \geq 10^{-3}, rocky objects do not grow beyond Mars-mass. The most typical outcome of dry pebble accretion is terrestrial planets with masses spanning from Mars to ∼\sim4 M⊕_{\oplus}.Comment: Accepted for publication in A&

    How Jupiters save or destroy inner Neptunes around evolved stars

    Get PDF
    In about 6 Gyr our Sun will evolve into a red giant and finally end its life as a white dwarf. This stellar metamorphosis will occur to virtually all known host stars of exoplanetary systems and is therefore crucial for their final fate. It is clear that the innermost planets will be engulfed and evaporated during the giant phase and that planets located farther out will survive. However, the destiny of planets in-between, at ~1 and 10 au, has not yet been investigated with a multiplanet tidal treatment. We here combine for the first time multiplanet interactions, stellar evolution, and tidal effects in an N-body code to study the evolution of a Neptune–Jupiter planetary system. We report that the fate of the Neptune-mass planet, located closer to the star than the Jupiter-mass planet, can be very different from the fate of a single Neptune. The simultaneous effects of gravitational interactions, mass loss, and tides can drive the planetary system toward mean motion resonances. Crossing these resonances affects particularly the eccentricity of the Neptune and thereby also its fate, which can be engulfment, collision with the Jupiter-mass planet, ejection from the system, or survival at a larger separation

    Thermal torque effects on the migration of growing low-mass planets

    Get PDF
    As planets grow the exchange of angular momentum with the gaseous component ofthe protoplanetary disc produces a net torque resulting in a variation of the semi-major axis of the planet. For low-mass planets not able to open a gap in the gaseousdisc this regime is known as type I migration. Pioneer works studied this mechanismin isothermal discs finding fast inward type I migration rates that were unable toreproduce the observed properties of extrasolar planets. In the last years, several im-provements have been made in order to extend the study of type I migration rates tonon-isothermal discs. Moreover, it was recently shown that if the planet?s luminositydue to solid accretion is taken into account, inward migration could be slowed downand even reversed. In this work, we study the planet formation process incorporating,and comparing, updated type I migration rates for non-isothermal discs and the role ofplanet?s luminosity over such rates. We find that the latter can have important effectson planetary evolution, producing a significant outward migration for the growingplanets.Fil: Guilera, Octavio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Cuello, N.. Pontificia Universidad Católica de Chile; ChileFil: Montesinos, M.. Universidad de Valparaíso; ChileFil: Miller Bertolami, Marcelo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Ronco, María Paula. Pontificia Universidad Católica de Chile; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Cuadra, J.. Pontificia Universidad Católica de Chile; ChileFil: Masset, F. S.. Universidad Autonoma de Mexico; Méxic

    Simultaneous formation of Jupiter and Saturn

    No full text

    Quantifying the Impact of the Dust Torque on the Migration of Low-mass Planets

    No full text
    Disk solids are critical in many planet formation processes; however, their effect on planet migration remains largely unexplored. Here we assess this important issue for the first time by building on the systematic measurements of dust torques on an embedded planet by Benitez-Llambay & Pessah. Adopting standard models for the gaseous disk and its solid content, we quantify the impact of the dust torque for a wide range of conditions describing the disk/planet system. We show that the total torque can be positive and reverse inward planet migration for planetary cores with M _p ≲ 10 M _⊕ . We compute formation tracks for low-mass embryos for conditions usually invoked when modeling planet formation processes. Our most important conclusion is that dust torques can have a significant impact on the migration and formation history of planetary embryos. The most important implications of our findings are as follows. (i) For nominal dust-to-gas mass ratios ϵ ≃ 0.01, low-mass planets migrate outwards beyond the water ice-line if most of the mass in the solids is in particles with Stokes numbers St ≃0.1. (ii) For ϵ ≳ 0.02–0.05, solids with small Stokes numbers, St ≃ 0.01, can play a dominant role if most of the mass is in those particles. (iii) Dust torques have the potential to enable low-mass planetary cores formed in the inner disk to migrate outwards and act as the seed for massive planets at distances of tens of au

    The nature of the radius valley

    Get PDF
    The existence of a radius valley in the Kepler size distribution stands as one of the most important observational constraints to understand the origin and composition of exoplanets with radii between those of Earth and Neptune. In this work we provide insights into the existence of the radius valley, first from a pure formation point of view and then from a combined formation-evolution model. We run global planet formation simulations including the evolution of dust by coagulation, drift, and fragmentation, and the evolution of the gaseous disc by viscous accretion and photoevaporation. A planet grows from a moon-mass embryo by either silicate or icy pebble accretion, depending on its position with respect to the water ice line. We include gas accretion, type I–II migration, and photoevaporation driven mass-loss after formation. We perform an extensive parameter study evaluating a wide range of disc properties and initial locations of the embryo. We find that due to the change in dust properties at the water ice line, rocky cores form typically with ∼3 M⊕ and have a maximum mass of ∼5 M⊕, while icy cores peak at ∼10 M⊕, with masses lower than 5 M⊕ being scarce. When neglecting the gaseous envelope, the formed rocky and icy cores account naturally for the two peaks of the Kepler size distribution. The presence of massive envelopes yields planets more massive than ∼10 M⊕ with radii above 4 R⊕. While the first peak of the Kepler size distribution is undoubtedly populated by bare rocky cores, as shown extensively in the past, the second peak can host half-rock–half-water planets with thin or non-existent H-He atmospheres, as suggested by a few previous studies. Some additional mechanisms inhibiting gas accretion or promoting envelope mass-loss should operate at short orbital periods to explain the presence of ∼10–40 M⊕ planets falling in the second peak of the size distribution

    Long Live the Disk: Lifetimes of Protoplanetary Disks in Hierarchical Triple-star Systems and a Possible Explanation for HD 98800 B

    No full text
    International audienceThe gas dissipation from a protoplanetary disk is one of the key processes affecting planet formation, and it is widely accepted that it happens on timescales of a few million years for disks around single stars. In recent years, several protoplanetary disks have been discovered in multiple-star systems, and despite the complex environment in which they find themselves, some of them seem to be quite old, a situation that may favor planet formation. A clear example of this is the disk around HD 98800 B, a binary in a hierarchical quadruple stellar system, which at an ~10 Myr age seems to still be holding significant amounts of gas. Here we present a 1D+1D model to compute the vertical structure and gas evolution of circumbinary disks in hierarchical triple-star systems considering different stellar and disk parameters. We show that tidal torques due to the inner binary, together with the truncation of the disk due to the external companion, strongly reduce the viscous accretion and expansion of the disk. Even allowing viscous accretion by tidal streams, disks in these kind of environments can survive for more than 10 Myr, depending on their properties, with photoevaporation being the main gas dissipation mechanism. We particularly apply our model to the circumbinary disk around HD 98800 B and confirm that its longevity, along with the current nonexistence of a disk around the companion binary HD 98800 A, can be explained with our model and by this mechanism
    corecore