14 research outputs found

    A new class of stochastic processes with great potential for interesting applications

    Full text link
    This paper contributes to the study of a new and remarkable family of stochastic processes that we will term class Σr(H)\Sigma^{r}(H). This class is potentially interesting because it unifies the study of two known classes: the class (Σ)(\Sigma) and the class M(H)\mathcal{M}(H). In other words, we consider the stochastic processes XX which decompose as X=m+v+AX=m+v+A, where mm is a local martingale, vv and AA are finite variation processes such that dAdA is carried by {t0:Xt=0}\{t\geq0:X_{t}=0\} and the support of dvdv is HH, the set of zeros of some continuous martingale DD. First, we introduce a general framework. Thus, we provide some examples of elements of the new class and present some properties. Second, we provide a series of characterization results. Afterwards, we derive some representation results which permit to recover a process of the class Σr(H)\Sigma^{r}(H) from its final value and of the honest times g=sup{t0:Xt=0}g=\sup\{t\geq0:X_{t}=0\} and γ=supH\gamma=\sup{H}. In final, we investigate an interesting application with processes presently studied. More precisely, we construct solutions for skew Brownian motion equations using stochastic processes of the class Σr(H)\Sigma^{r}(H).Comment: 23 page

    Approche probabiliste des particules collantes et système de gaz sans pression

    No full text
    Président du jury: Davidov, YouriAt each time tt, our construction of sticky particle dynamics, with initial mass repartition function F0F_0 and velocities u0u_0, is given by the convex hull H(,t)H(\cdot,t) of the function m(0,1)am(F0(1)(z)+tu0(F0(1)(z)))dzm\in (0, 1)\mapsto \int_a^m\big( F_0^(-1)(z) + tu_0\big(F_0^(-1)(z)\big)\big)dz. Here, F0(1)F_0^(-1) is one of two inverse functions of F0F_0. We show that the processes Xt(m)=mH(m,t),  Xt+(m)=m+H(m,t)X_t^-(m)= \partial_m^-H(m,t),\; X_t^+(m) = \partial_m^+H(m,t), defined on the probability space ([0,1],(B),λ)([0, 1], (\cal B), \lambda), are not distinguishable, and they model the particle trajectories. The process Xt=:Xt=Xt+X_t=:X_t^-=X_t^+ is a solution of the equation (SDE):\;\frac(dX_t)(dt) =\E[ u_0(X_0)/X_t], such that P(X0x)=F0(x)xP(X_0 \leq x) = F_0(x)\,\,\forall x. The inverse Mt:=M(,t)M_t:= M(\cdot,t) of the map mmH(m,t)m\mapsto \partial_mH(m,t) is the mass repartition function at time tt. It is also the repartition function of the random variable XtX_t. We show the existence of a forward flow map (ϕ(x,t,Ms,us),s0)\big(\phi(x,t,M_s, u_s),\,s 0\big) is a weak solution of the pressure-less gas system of equations with initial datum (dF0(x))(dx),u0\frac(dF_0(x))(dx), u_0. This thesis also presents other solutions of the above stochastic differential equation (SDE)(SDE).A chaque instant tt, nous construisons la dynamique des particules collantes dont la masse est distribuée initialement suivant une fonction de répartition F0F_0, avec une vitesse u0u_0, à partir de l'enveloppe convexe H(,t)H(\cdot,t) de la fonction m(0,1)am(F0(1)(z)+tu0(F0(1)(z)))dzm\in (0,1)\mapsto \int_a^m\big( F_0^(-1)(z) + tu_0\big(F_0^(-1)(z)\big)\big)dz. Ici, F0(1)F_0^(-1) est l'une des deux fonctions inverses de F0F_0. Nous montrons que les deux processus stochastiques Xt(m)=mH(m,t),  Xt+(m)=m+H(m,t)X_t^-(m)= \partial_m^-H(m,t),\; X_t^+(m) = \partial_m^+H(m,t), définis sur l'espace probabilisé ([0,1],(B),λ)([0, 1], (\cal B), \lambda), sont indistinguables et ils modélisent les trajectoires des particules. Le processus Xt:=Xt=Xt+X_t:= X_t^- = X_t^+ est une solution de l'équation (EDS): \; \frac(dX_t)(dt) =\E[ u_0(X_0)/X_t], telle que P(X0x)=F0(x)xP(X_0 \leq x) = F_0(x)\,\,\forall x. L'inverse Mt:=M(,t)M_t:= M(\cdot,t) de la fonction mmH(m,t)m\mapsto \partial_mH(m,t) est la fonction de répartition de la masse à l'instant tt. Elle est aussi la fonction de répartition de la variable aléatoire XtX_t. On montre l'existence d'un flot (ϕ(x,t,Ms,us))(s0)(\phi(x,t,M_s, u_s))_( s 0) est une solution faible du système de gaz sans pression de données initiales (dF0(x))(dx),u0\frac(dF_0(x))(dx), u_0. Cette thèse contient aussi d'autres solutions de l'équation différentielle stochastique (EDS)(EDS) ci-dessus

    Systems of Sticky Particles Governed by Burgers' Equation

    Get PDF
    corecore