190 research outputs found

    The location, clustering, and propagation of massive star formation in giant molecular clouds

    Get PDF
    Massive stars are key players in the evolution of galaxies, yet their formation pathway remains unclear. In this work, we use data from several galaxy-wide surveys to build an unbiased dataset of ~700 massive young stellar objects (MYSOs), ~200 giant molecular clouds (GMCs), and ~100 young (<10 Myr) optical stellar clusters (SCs) in the Large Magellanic Cloud. We employ this data to quantitatively study the location and clustering of massive star formation and its relation to the internal structure of GMCs. We reveal that massive stars do not typically form at the highest column densities nor centers of their parent GMCs at the ~6 pc resolution of our observations. Massive star formation clusters over multiple generations and on size scales much smaller than the size of the parent GMC. We find that massive star formation is significantly boosted in clouds near SCs. Yet, whether a cloud is associated with a SC does not depend on either the cloud's mass or global surface density. These results reveal a connection between different generations of massive stars on timescales up to 10 Myr. We compare our work with Galactic studies and discuss our findings in terms of GMC collapse, triggered star formation, and a potential dichotomy between low- and high-mass star formation.Comment: 13 pages, 7 figures, in pres

    Nested shells reveal the rejuvenation of the Orion-Eridanus superbubble

    Get PDF
    The Orion-Eridanus superbubble is the prototypical superbubble due to its proximity and evolutionary state. Here, we provide a synthesis of recent observational data from WISE and Planck with archival data, allowing to draw a new and more complete picture on the history and evolution of the Orion-Eridanus region. We discuss the general morphological structures and observational characteristics of the superbubble, and derive quantitative properties of the gas- and dust inside Barnard's Loop. We reveal that Barnard's Loop is a complete bubble structure which, together with the lambda Ori region and other smaller-scale bubbles, expands within the Orion-Eridanus superbubble. We argue that the Orion-Eridanus superbubble is larger and more complex than previously thought, and that it can be viewed as a series of nested shells, superimposed along the line of sight. During the lifetime of the superbubble, HII region champagne flows and thermal evaporation of embedded clouds continuously mass-load the superbubble interior, while winds or supernovae from the Orion OB association rejuvenate the superbubble by sweeping up the material from the interior cavities in an episodic fashion, possibly triggering the formation of new stars that form shells of their own. The steady supply of material into the superbubble cavity implies that dust processing from interior supernova remnants is more efficient than previously thought. The cycle of mass-loading, interior cleansing, and star formation repeats until the molecular reservoir is depleted or the clouds have been disrupted. While the nested shells come and go, the superbubble remains for tens of millions of years.Comment: 20 pages, 6 figures, accepted for publication in Ap

    The Dynamic Behavior of the Basilica of San Francesco in Assisi Using Simplified Analytical Models

    Get PDF
    The Basilica of San Francesco in Assisi endured stronger earthquakes for centuries before 1997 earthquake, which generated the collapse of the two vaults. Experts blame as possible reasons of collapse the damage cumulated from previous earthquakes and/or the retrofitting made to the structure over its lifetime. This article presents the history of the retrofit interventions of the Basilica through the centuries, focusing mainly on the roof, which has been subjected to three major restorations through its life. It is shown using simple analytical models that the cumulative effects of the changes made to the roof of the Basilica affected the structure's dynamic behavior in a negative manner, increasing the seismic loads on the existing structural members. In particular, the numerical results show that the 1958 roof intervention has stiffened the structure, redistributing the seismic loads on the facade and the transept. This overload might explain the collapse of the two Gothic vaults during 1997 earthquake

    Self-anchored Suspension Bridges with Prestressed Concrete Deck: Some Historic Examples

    Full text link

    Material and Seismic Assessment of the Great House at Casa Grande Ruins National Monument, Arizona

    Get PDF
    The authors characterized earthen wall materials and plasters in a mid-fourteenth-century Hohokam great house at Casa Grande Ruins National Monument (Arizona) and assessed the seismic susceptibility of its puddled earth walls. Characterization included determining the microstructure, microcomposition, porosity, aggregate mineralogy, and identification of phases in the binding matrix for each of 36 samples and reconstructing plaster technologies, including material selection, preparation, and application sequences. Findings support the ideas that earthen materials were manipulated to optimize their performance to suit the unique site conditions and needs of the ancient people using the structure and included finishes that were unusual in southwestern sites from this time period. By using a new set of tools that integrate the complicated geometry of individual wall segments as captured in light detection and ranging (LiDAR) scans (models were generated in Rhino version 5) with the dynamic analysis of rocking mechanisms (tools for this analysis were developed in Rhino), seismic collapse assessment was used to identify the most vulnerable parts of the building to earthquake loading and provided an initial evaluation of the seismic overturning capacity of these wall segments

    XSHOOTER spectroscopy of the enigmatic planetary nebula Lin49 in the Small Magellanic Cloud

    Get PDF
    We performed a detailed spectroscopic analysis of the fullerene C60-containing planetary nebula (PN) Lin49 in the Small Magellanic Cloud (SMC) using XSHOOTER at the European Southern Observatory Very Large Telescope and the Spitzer/Infrared Spectrograph instruments. We derived nebular abundances for nine elements. We used TLUSTY to derive photospheric parameters for the central star. Lin49 is C-rich and metal-deficient PN (Z ∼ 0.0006). The nebular abundances are in good agreement with asymptotic giant branch nucleosynthesis models for stars with initial mass 1.25 M⊙ and metallicity Z = 0.001. Using the TLUSTY synthetic spectrum of the central star to define the heating and ionizing source, we constructed the photoionization model with CLOUDY that matches the observed spectral energy distribution (SED) and the line fluxes in the UV to far-IR wavelength ranges simultaneously. We could not fit the ∼1–5 μm SED using a model with 0.005–0.1-μm-sized graphite grains and a constant hydrogen density shell owing to the prominent near-IR excess, while at other wavelengths the model fits the observed values reasonably well. We argue that the near-IR excess might indicate either (1) the presence of very small particles in the form of small carbon clusters, small graphite sheets, or fullerene precursors, or (2) the presence of a high-density structure surrounding the central star. We found that SMC C60 PNe show a near-IR excess component to lesser or greater degree. This suggests that these C60 PNe might maintain a structure nearby their central star

    Structural Material Quantities And Embodied Carbon Coefficients: Challenges And Opportunities

    Get PDF
    Many innovations in recent decades have attempted to lower the operational energy use of buildings, which has increased the percentage of embodied energy in the life cycle of structures. Despite a growing interest in this field, practitioners still need an embodied carbon estimator, an agreement on the appropriate Embodied Carbon Coefficient (ECC expressed in kg-CO₂e / kgmaterial) standards and the collection of material quantities in building structures. This paper defines the challenges in obtaining the material quantities and estimating the embodied carbon of structural materials. By critically reviewing existing efforts and interviewing several leading design firms, this paper aims to build literacy on challenges and opportunities in obtaining the embodied carbon of buildings. Two primary variables are analyzed: the material quantities (kgmaterial / m²) and the ECCs. The outcome will give confidence in the Global Warming Potential (GWP measured in kg-CO₂e / m²) of buildings. The main challenges consist of creating incentives for data collection, identifying default ECC values per location and marrying transparency and intellectual ownership protection. The main opportunities are generating large amounts of data from Building Information Models, proposing an agreement on ECC ranges and outlining a unified methodology for the definition of reference buildings

    On the interplay between flaring and shadowing in disks around Herbig Ae/Be stars

    Get PDF
    Based on the SED, Herbig stars have been categorized into two observational groups, reflecting their overall disk structure: group I members have disks with a higher degree of flaring than their group II counterparts. We investigate the 5-35 um Spitzer IRS spectra of a sample of 13 group I sources and 20 group II sources. We focus on the continuum emission to study the underlying disk geometry. We have determined the [30/13.5] and [13.5/7] continuum flux ratios. The 7-um flux excess with respect to the stellar photosphere is measured, as a marker for the strength of the near-IR emission produced by the inner disk. We have compared our data to self-consistent passive-disk model spectra, for which the same quantities were derived. We confirm the literature result that the difference in continuum emission between group I and II sources can largely be explained by a different amount of small dust grains. However, we report a strong correlation between the [30/13.5] and [13.5/7] flux ratios for Meeus group II sources. Moreover, the [30/13.5] flux ratio decreases with increasing 7-um excess for all targets in the sample. To explain these correlations with the models, we need to introduce an artificial scaling factor for the inner disk height. In roughly 50% of the Herbig Ae/Be stars in our sample, the inner disk must be inflated by a factor 2 to 3 beyond what hydrostatic calculations predict. The total disk mass in small dust grains determines the degree of flaring. We conclude, however, that for any given disk mass in small dust grains, the shadowing of the outer (tens of AU) disk is determined by the scale height of the inner disk (1 AU). The inner disk partially obscures the outer disk, reducing the disk surface temperature. Here, for the first time, we prove these effects observationally.Comment: 4 pages, 3 figures, accepted by A&
    • …
    corecore