17 research outputs found

    Mutation screening using formalin-fixed paraffin-embedded tissues: a stratified approach according to DNA quality.

    Get PDF
    DNA samples from formalin-fixed paraffin-embedded tissues are highly degraded with variable quality, and this imposes a big challenge for targeted sequencing due to false positives, largely caused by PCR errors and cytosine deamination. To eliminate false positives, a common practice is to validate the detected variants by Sanger sequencing or perform targeted sequencing in duplicate. Technically, PCR errors could be removed by molecular barcoding of template DNA prior to amplification as in the HaloPlexHS design. Nonetheless, it is uncertain to what extent variants detected using this approach should be further validated. Here, we addressed this question by correlating variant reproducibility with DNA quality using HaloPlexHS target enrichment and Illumina HiSeq4000, together with an in-house validated variant calling algorithm. The overall sequencing coverage, as shown by analyses of 70 genes in 266 cases of large B-cell lymphoma, was excellent (98%) in DNA samples amenable for PCR of ≥400 bp, but suboptimal (92%) and poor (80%) in those amenable for PCR of 300 bp and 200 bp respectively. By mutation analysis in duplicate in 93 cases, we demonstrated that 20 alternative allele depth (AAD) was an optimal cut-off value for separating reproducible from non-reproducible variants in DNA samples amenable for PCR of ≥300 bp, with 97% sensitivity and 100% specificity. By cross validation with a previously established targeted sequencing protocol by Fluidigm-PCR and Illumina MiSeq, the HaloPlexHS protocol was shown to be highly sensitive and specific in mutation screening. To conclude, we proposed a stratified approach for mutation screening by HaloplexHS and Illumina HiSeq4000 according to DNA quality. DNA samples with good quality (≥400 bp) are amenable for mutation analysis with a single replicate, with only variants at 15-20 AAD requiring for further validation, while those with suboptimal quality (300 bp) are better analysed in duplicate with reproducible variants at >15 AAD regarded as true genetic changes

    Thrombotic Antiphospholipid Syndrome Shows Strong Haplotypic Association with SH2B3-ATXN2 Locus

    Get PDF
    Background : Thrombotic antiphospholipid syndrome is defined as a complex form of thrombophilia that is developed by a fraction of antiphospholipid antibody (aPLA) carriers. Little is known about the genetic risk factors involved in thrombosis development among aPLA carriers. Methods: To identify new loci conferring susceptibility to thrombotic antiphospholipid syndrome, a two-stage genotyping strategy was performed. In stage one, 19,000 CNV loci were genotyped in 14 thrombotic aPLA+ patients and 14 healthy controls by array-CGH. In stage two, significant CNV loci were fine-mapped in a larger cohort (85 thrombotic aPLA+, 100 non-thrombotic aPLA+ and 569 healthy controls). Results : Array-CGH and fine-mapping analysis led to the identification of 12q24.12 locus as a new susceptibility locus for thrombotic APS. Within this region, a TAC risk haplotype comprising one SNP in SH2B3 gene (rs3184504) and two SNPs in ATXN2 gene (rs10774625 and rs653178) exhibited the strongest association with thrombotic antiphospholipid syndrome (p-value = 5,9 × 10−4 OR 95% CI 1.84 (1.32–2.55)). Conclusion : The presence of a TAC risk haplotype in ATXN2-SH2B3 locus may contribute to increased thrombotic risk in aPLA carriers.This work was supported by the Basque Government (Etortek IE09-256, Saiotek S-PE10UN82 and Plan +Euskadi 09UE09+/57 to AMZ and Saiotek- PE08UN73 and Saiotek- PE09UN64 to AE) and by the UPV/EHU (UFI 11/20 to AMZ). Dr. Ruiz-Irastorza is supported by the Department of Education, Universities and Research of the Basque Government

    MethylCal: Bayesian Calibration of Methylation Levels

    Get PDF
    Bisulfite amplicon sequencing has become the primary choice for single-base methylation quantification of multiple targets in parallel. The main limitation of this technology is a preferential amplification of an allele and strand in the PCR due to methylation state. This effect, known as PCR bias', causes inaccurate estimation of the methylation levels and calibration methods based on standard controls have been proposed to correct for it. Here, we present a Bayesian calibration tool, MethylCal, which can analyse jointly all CpGs within a CpG island (CGI) or a Differentially Methylated Region (DMR), avoiding one-at-a-time' CpG calibration. This enables more precise modeling of the methylation levels observed in the standard controls. It also provides accurate predictions of the methylation levels not considered in the controlled experiment, a feature that is paramount in the derivation of the corrected methylation degree. We tested the proposed method on eight independent assays (two CpG islands and six imprinting DMRs) and demonstrated its benefits, including the ability to detect outliers. We also evaluated MethylCal's calibration in two practical cases, a clinical diagnostic test on 18 patients potentially affected by Beckwith-Wiedemann syndrome, and 17 individuals with celiac disease. The calibration of the methylation levels obtained by MethylCal allows a clearer identification of patients undergoing loss or gain of methylation in borderline cases and could influence further clinical or treatment decisions.Alan Turing Institute under the Engineering and Physical Sciences Research Council [EP/N510129/1 to L.B.]; UK Medical Research Council [MC UU 00002/7 to V.Z.]; Wellcome Trust and the Royal Society [204623/Z/16/Z to V.Z.]; National Institute of Health Research (Senior Investigator Award and Cambridge NIHR Biomedical Research Centre) (to E.R.M.). The University of Cambridge has received salary support (E.R.M.) from the NHS in the East of England through the Clinical Academic Reserve. Funding for open access charge: Cambridge Open Access: https://www.openaccess.cam.ac.uk/

    LDLR and PCSK9 Are Associated with the Presence of Antiphospholipid Antibodies and the Development of Thrombosis in aPLA Carriers.

    No full text
    The identification of the genetic risk factors that could discriminate non- thrombotic from thrombotic antiphospholipid antibodies (aPLA) carriers will improve prognosis of these patients. Several human studies have shown the presence of aPLAs associated with atherosclerotic plaque, which is a known risk factor for thrombosis. Hence, in order to determine the implication of atherosclerosis in the risk of developing thrombosis in aPLA positive patients, we performed a genetic association study with 3 candidate genes, APOH, LDLR and PCSK9.For genetic association study we analyzed 190 aPLA carriers -100 with non-thrombotic events and 90 with thrombotic events- and 557 healthy controls. Analyses were performed by χ2 test and were corrected by false discovery rate. To evaluate the functional implication of the newly established susceptibility loci, we performed expression analyses in 86 aPLA carrier individuals (43 with thrombotic manifestations and 43 without it) and in 45 healthy controls.Our results revealed significant associations after correction in SNPs located in LDLR gene with aPLA carriers and thrombotic aPLA carriers, when compared with healthy controls. The most significant association in LDLR gene was found between SNP rs129083082 and aPLA carriers in recessive model (adjusted P-value = 2.55 x 10-3; OR = 2.18; 95%CI = 1.49-3.21). Furthermore, our work detected significant allelic association after correction between thrombotic aPLA carriers and healthy controls in SNP rs562556 located in PCSK9 gene (adjusted P-value = 1.03 x 10-2; OR = 1.60; 95%CI = 1.24-2.06). Expression level study showed significantly decreased expression level of LDLR gene in aPLA carriers (P-value <0.0001; 95%CI 0.16-2.10; SE 0.38-1.27) in comparison to the control group.Our work has identified LDLR gene as a new susceptibility gene associated with the development of thrombosis in aPLA carriers, describing for the first time the deregulation of LDLR expression in individuals with aPLAs. Besides, thrombotic aPLA carriers also showed significant association with PCSK9 gene, a regulator of LDLR plasma levels. These results highlight the importance of atherosclerotic processes in the development of thrombosis in patients with aPLA

    Thrombotic Antiphospholipid Syndrome Shows Strong Haplotypic Association with <i>SH2B3-ATXN2</i> Locus

    Get PDF
    <div><p>Background</p><p>Thrombotic antiphospholipid syndrome is defined as a complex form of thrombophilia that is developed by a fraction of antiphospholipid antibody (aPLA) carriers. Little is known about the genetic risk factors involved in thrombosis development among aPLA carriers.</p><p>Methods</p><p>To identify new loci conferring susceptibility to thrombotic antiphospholipid syndrome, a two-stage genotyping strategy was performed. In stage one, 19,000 CNV loci were genotyped in 14 thrombotic aPLA+ patients and 14 healthy controls by array-CGH. In stage two, significant CNV loci were fine-mapped in a larger cohort (85 thrombotic aPLA+, 100 non-thrombotic aPLA+ and 569 healthy controls).</p><p>Results</p><p>Array-CGH and fine-mapping analysis led to the identification of 12q24.12 locus as a new susceptibility locus for thrombotic APS. Within this region, a <i>TAC</i> risk haplotype comprising one SNP in <i>SH2B3</i> gene (rs3184504) and two SNPs in <i>ATXN2</i> gene (rs10774625 and rs653178) exhibited the strongest association with thrombotic antiphospholipid syndrome (p-value = 5,9 × 10<sup>−4</sup> OR 95% CI 1.84 (1.32–2.55)).</p><p>Conclusion</p><p>The presence of a <i>TAC</i> risk haplotype in <i>ATXN2-SH2B3</i> locus may contribute to increased thrombotic risk in aPLA carriers.</p></div

    LDLR and PCSK9 Are Associated with the Presence of Antiphospholipid Antibodies and the Development of Thrombosis in aPLA Carriers

    Get PDF
    Introduction The identification of the genetic risk factors that could discriminate non-thrombotic from thrombotic antiphospholipid antibodies (aPLA) carriers will improve prognosis of these patients. Several human studies have shown the presence of aPLAs associated with atherosclerotic plaque, which is a known risk factor for thrombosis. Hence, in order to determine the implication of atherosclerosis in the risk of developing thrombosis in aPLA positive patients, we performed a genetic association study with 3 candidate genes, APOH, LDLR and PCSK9. Material & Methods For genetic association study we analyzed 190 aPLA carriers -100 with non-thrombotic events and 90 with thrombotic events-and 557 healthy controls. Analyses were performed by chi(2) test and were corrected by false discovery rate. To evaluate the functional implication of the newly established susceptibility loci, we performed expression analyses in 86 aPLA carrier individuals (43 with thrombotic manifestations and 43 without it) and in 45 healthy controls. Results Our results revealed significant associations after correction in SNPs located in LDLR gene with aPLA carriers and thrombotic aPLA carriers, when compared with healthy controls. The most significant association in LDLR gene was found between SNP rs129083082 and aPLA carriers in recessive model (adjusted P-value = 2.55 x 10(-3); OR = 2.18; 95% CI = 1.49-3.21). Furthermore, our work detected significant allelic association after correction between thrombotic aPLA carriers and healthy controls in SNP rs562556 located in PCSK9 gene (adjusted P-value = 1.03 x 10(-2); OR = 1.60; 95% CI = 1.24-2.06). Expression level study showed significantly decreased expression level of LDLR gene in aPLA carriers (P-value < 0.0001; 95% CI 0.16-2.10; SE 0.38-1.27) in comparison to the control group. Discussion Our work has identified LDLR gene as a new susceptibility gene associated with the development of thrombosis in aPLA carriers, describing for the first time the deregulation of LDLR expression in individuals with aPLAs. Besides, thrombotic aPLA carriers also showed significant association with PCSK9 gene, a regulator of LDLR plasma levels. These results highlight the importance of atherosclerotic processes in the development of thrombosis in patients with aPLA.Support was provided by the Basque Government (www.euskadi.eus/) Etortek IE09-256, Saiotek S-PE10UN82, Plan +Euskadi 09UE09+/57, Saiotek-PE08UN73 and Saiotek-PE09UN64; and by the University of the Basque Country (www.ehu.eus/) UFI 11/20. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Candidate susceptibility region 12q24.12 identified by the combination of results obtained with array-CGH and published genome-wide association studies (GWAS) in related diseases.

    No full text
    <p>a) description of the region, b) location of the MCR identified in our array-CGH analysis, c) previously described CNVs in the region, d) SNPs selected for our genotyping analysis, e) linkage disequilibrium (LD) structure across the 12q24.12 locus. The LD structure has been obtained with Haploview software v.4.3, based on r<sup>2</sup> coefficient calculated with the CEU HapMap database.</p
    corecore