5 research outputs found

    Risk of Injection-Site Abscess among Infants Receiving a Preservative-Free, Two-Dose Vial Formulation of Pneumococcal Conjugate Vaccine in Kenya.

    Get PDF
    There is a theoretical risk of adverse events following immunization with a preservative-free, 2-dose vial formulation of 10-valent-pneumococcal conjugate vaccine (PCV10). We set out to measure this risk. Four population-based surveillance sites in Kenya (total annual birth cohort of 11,500 infants) were used to conduct a 2-year post-introduction vaccine safety study of PCV10. Injection-site abscesses occurring within 7 days following vaccine administration were clinically diagnosed in all study sites (passive facility-based surveillance) and, also, detected by caregiver-reported symptoms of swelling plus discharge in two sites (active household-based surveillance). Abscess risk was expressed as the number of abscesses per 100,000 injections and was compared for the second vs first vial dose of PCV10 and for PCV10 vs pentavalent vaccine (comparator). A total of 58,288 PCV10 injections were recorded, including 24,054 and 19,702 identified as first and second vial doses, respectively (14,532 unknown vial dose). The risk ratio for abscess following injection with the second (41 per 100,000) vs first (33 per 100,000) vial dose of PCV10 was 1.22 (95% confidence interval [CI] 0.37-4.06). The comparator vaccine was changed from a 2-dose to 10-dose presentation midway through the study. The matched odds ratios for abscess following PCV10 were 1.00 (95% CI 0.12-8.56) and 0.27 (95% CI 0.14-0.54) when compared to the 2-dose and 10-dose pentavalent vaccine presentations, respectively. In Kenya immunization with PCV10 was not associated with an increased risk of injection site abscess, providing confidence that the vaccine may be safely used in Africa. The relatively higher risk of abscess following the 10-dose presentation of pentavalent vaccine merits further study

    Using research to prepare for outbreaks of severe acute respiratory infection

    No full text
    Severe acute respiratory infections (SARI) remain one of the leading causes of mortality around the world in all age groups. There is large global variation in epidemiology, clinical management and outcomes, including mortality. We performed a short period observational data collection in critical care units distributed globally during regional peak SARI seasons from 1 January 2016 until 31 August 2017, using standardised data collection tools. Data were collected for 1 week on all admitted patients who met the inclusion criteria for SARI, with follow-up to hospital discharge. Proportions of patients across regions were compared for microbiology, management strategies and outcomes. Regions were divided geographically and economically according to World Bank definitions. Data were collected for 682 patients from 95 hospitals and 23 countries. The overall mortality was 9.5%. Of the patients, 21.7% were children, with case fatality proportions of 1% for those less than 5 years. The highest mortality was in those above 60 years, at 18.6%. Case fatality varied by region: East Asia and Pacific 10.2% (21 of 206), Sub-Saharan Africa 4.3% (8 of 188), South Asia 0% (0 of 35), North America 13.6% (25 of 184), and Europe and Central Asia 14.3% (9 of 63). Mortality in low-income and low-middle-income countries combined was 4% as compared with 14% in high-income countries. Organ dysfunction scores calculated on presentation in 560 patients where full data were available revealed Sequential Organ Failure Assessment (SOFA) scores on presentation were significantly associated with mortality and hospital length of stay. Patients in East Asia and Pacific (48%) and North America (24%) had the highest SOFA scores of >12. Multivariable analysis demonstrated that initial SOFA score and age were independent predictors of hospital survival. There was variability across regions and income groupings for the critical care management and outcomes of SARI. Intensive care unit-specific factors, geography and management features were less reliable than baseline severity for predicting ultimate outcome. These findings may help in planning future outbreak severity assessments, but more globally representative data are required

    Using research to prepare for outbreaks of severe acute respiratory infection

    No full text
    Abstract Severe acute respiratory infections (SARI) remain one of the leading causes of mortality around the world in all age groups. There is large global variation in epidemiology, clinical management and outcomes, including mortality. We performed a short period observational data collection in critical care units distributed globally during regional peak SARI seasons from 1 January 2016 until 31 August 2017, using standardised data collection tools. Data were collected for 1 week on all admitted patients who met the inclusion criteria for SARI, with follow-up to hospital discharge. Proportions of patients across regions were compared for microbiology, management strategies and outcomes. Regions were divided geographically and economically according to World Bank definitions. Data were collected for 682 patients from 95 hospitals and 23 countries. The overall mortality was 9.5%. Of the patients, 21.7% were children, with case fatality proportions of 1% for those less than 5 years. The highest mortality was in those above 60 years, at 18.6%. Case fatality varied by region: East Asia and Pacific 10.2% (21 of 206), Sub-Saharan Africa 4.3% (8 of 188), South Asia 0% (0 of 35), North America 13.6% (25 of 184), and Europe and Central Asia 14.3% (9 of 63). Mortality in low-income and low-middle-income countries combined was 4% as compared with 14% in high-income countries. Organ dysfunction scores calculated on presentation in 560 patients where full data were available revealed Sequential Organ Failure Assessment (SOFA) scores on presentation were significantly associated with mortality and hospital length of stay. Patients in East Asia and Pacific (48%) and North America (24%) had the highest SOFA scores of >12. Multivariable analysis demonstrated that initial SOFA score and age were independent predictors of hospital survival. There was variability across regions and income groupings for the critical care management and outcomes of SARI. Intensive care unit-specific factors, geography and management features were less reliable than baseline severity for predicting ultimate outcome. These findings may help in planning future outbreak severity assessments, but more globally representative data are required
    corecore