6 research outputs found

    Diagnosing domestic and transboundary sources of fine particulate matter (PM2.5) in UK cities using GEOS-Chem

    Get PDF
    The UK is set to impose a stricter ambient annual mean fine particulate matter (PM2.5) standard than was first adopted fourteen years ago. This necessitates strengthened knowledge of the magnitude and sources that influence urban PM2.5 in UK cities to ensure compliance and improve public health. Here, we use a regional-scale chemical transport model (GEOS-Chem), validated with national ground-based observations, to quantify the influence of specific sources within and transported to the mid-sized UK city Leicester. Of the sources targeted, we find that agricultural emissions of ammonia (NH3) make the largest contribution (3.7 μg m−3 or 38 % of PM2.5) to annual mean PM2.5 in Leicester. Another important contributor is long-range transport of pollution from continental Europe accounting for 1.8 μg m−3 or 19 % of total annual mean PM2.5. City sources are a much smaller portion (0.2 μg m−3; 2 %). We also apply GEOS-Chem to the much larger cities Birmingham and London to find that agricultural emissions of NH3 have a greater influence than city sources for Birmingham (32 % agriculture, 19 % city) and London (25 % agriculture, 13 % city). The portion from continental Europe is 16 % for Birmingham and 28 % for London. Action plans aimed at national agricultural sources of NH3 and strengthened supranational agreements would be most effective at alleviating PM2.5 in most UK cities

    iTRAQ – An Integrated Traffic Management and Air Quality Control System Using Space Services

    Get PDF
    There is a strong need for local authorities to meet the challenges of sustainable transport as well as complying with air quality targets. iTRAQ - Integrated Traffic Management and Air Quality using Space Services is a European Space Agency funded project. During the course of a feasibility study a consortium of UK industry, academic and local authority partners developed and validated a dynamic system for optimising the use of the road network balanced with the need to sustain high standards of air quality. iTRAQ uses a number of inputs that enable it to sense the current situation in near-real-time and provide accurate forecasts using a computational intelligence module. Traffic flow, queues, and congestion are gathered using traditional ground-based sensors as well as Global Navigation Satellite Systems based vehicle data. Air quality information is obtained from in situ monitors, a City-wide Gaussian dispersion model (Airviro), a European-scale ensemble model (MACC), and direct measurements from low-earth orbit satellites (OMI and GOME-2). The concept has been tested and validated using near-real-time data and a simulation environment, providing enhanced strategies to the local authority. Following a successful feasibility study, a larger demonstration phase is now being planned and other local authorities are being encouraged to participate. This paper gives an overview of this novel system and presents some initial test results that confirm the feasibility of this integrated system, reducing the traffic delay, increasing the flow and optimising the local air quality levels

    Investigations of genomic changes induced by the FAC drug combination

    Full text link
    At the present, researchers are not able to predict which individual patients might be susceptible to developing AML. Current research carried out in various laboratories is focused on identifying potential markers that would allow for identification of such patients. The analysis of gene expression profiles of cells treated with the FAC drug regime gave an insight on the impact that the chemotherapeutics have on non-cancerous cells. Exposure to the FAC drug regime caused many changes in gene expression profiles of treated cells. Experiments examining the impact of single doses treatments and combined FAC regime showed variations in gene expression responses to the xenobiotics. Gene expression profiles varied depending on the amount of time that the cells were exposed to the FAC drugs. Shorter exposure to FAC drugs generated more overexpresed genes. During the microarray analysis, synergistic interactions between FAC drugs were discovered. Such synergistic interactions could be very important for future drug discovery and population studies. Two candidate biomarkers were also investigated as potential indicators of susceptibility to developing secondary leukaemias. Minisatellite MS1 and MLL/AF4 translocations were analysed. Minisatellites are highly sensitive repeat regions in human genome that might be susceptible to changes induced by xenobiotics. MS1 has a highly variable internal structure, because of its variability and unstable nature, it was chosen to act as biomarker. An alternative method to detect DNA damage by identification of MLL/AF4 translocations was explored in this project. Chromosomal aberrations between those genes may cause secondary leukaemeia in cancer patients. PCR based techniques were utilised to detect any MLL/AF4 translocations present both in cell lines and in patients' DNA. Both minisatellites MS1 and MLL/AF4 translocations proved not to be suitable candidates as biomarkers
    corecore