30 research outputs found
Fertilization and early embryology: Use of lasers in assisted fertilization and hatching
The erbium-yttrium-aluminium-garnet (Er: YAG) laser has been applied to micromanipulation in humans. It was used in the fertilization process for both subzonal insemination (SUZI) and for partial zona dissection (PZD). Laser-assisted micromanipulation achieved significantly higher fertilization rates (34.8%) when compared to mechanical SUZI (16.1%), but use of the laser did not improve the PZD results (laser 14.8% versus mechanical 14%). The Er: YAG laser was used to assist hatching. In the mouse it significantly improved the hatching rate (80 versus 29.3%) 110 h after administration of human chorionic gonadotrophin. This technique was applied in two different centres to patients with previous in-vitro fertilization (IVF) failures. The implantation rate per embryo (14.4% laser-assisted hatching versus 6% control group) and the pregnancy rate per transfer (40 versus 16.2%) were improve
Assisted hatching in mouse embryos using a noncontact Ho:YSGG laser system
PurposeA noncontact holmium:yttrium scandium gallium garnet (Ho:YSGG) laser system has been designed and tested for the micromanipulation of mammalian embryos. The purpose of this preliminary investigation was to determine the effectiveness of this laser for assisted hatching and evaluate its impact on embryo viability. The Ho:YSGG system, utilizing 250-microsecond pulses at a wavelength of 2.1 microns and 4 Hz, was used to remove a portion of the zona pellucida (ZP) of two- to four-cell FVB mouse embryos.ResultsIn the first experiment there was no difference in blastocyst production or hatching rates following laser or conventional assisted hatching (LAH or AH, respectively) in contrast to control embryos cultured in a 5% CO2 humidified air incubator at 37 degrees C. In the second experiment a blastocyst antihatching culture model was employed and LAH-treated embryos were cultured in a serum-free HTF medium (HTF-o). Blastocyst formation was not influenced by LAH treatment and hatching was increased (P < 0.01) from 4 to 60% compared to HTF-o control group.ConclusionsThese preliminary data demonstrate the utility and nontoxic properties of the Ho:YSGG laser system for quick and precise ZP drilling
Vascular endothelial growth factor and its receptors in male fertility
Objective: To determine the concentration of vascular endothelial growth factor in the seminal fluid, the presence of vascular endothelial growth factor receptors Flt-1 and KDR in spermatozoa, and the predictive value of seminal vascular endothelial growth factor on fertilization and the chance of pregnancy in patients undergoing intracytoplasmic sperm injection (ICSI) or IVF
Assisted reproductive research: Laser assisted hatching and spindle detection (spindle view technique)
Animal experiments are very important for the development of new assisted reproductive techniques (ART) for use in human and animal reproductive medicine. Most technical aspects of reproductive manipulation of humans and animals are very similar, and many components of successful human ART used nowadays have been derived from animal studies. In this study we examined (1) the use of 'non-contact' laser for assisted hatching, (2) whether spindles in living mouse oocytes could safely be imaged/examined by polarisation microscope (polscope) and (3) the influence of environment (e.g. temperature, in vitro culture, etc.) on spindle detection/visualisation. The data of the study presented here show that (1) laser assisted hatching (AH) is a fast, very accurate and safe procedure without any harmful effect on embryo development and it can support very effectively the implantation of embryos, (2) the use of polscope facilitates the evaluation of oocyte quality and the selection of oocytes with spindle, (3) by monitoring the spindle position during intracytoplasmic sperm injection (ICSI), we can reduce spindle damage and increase the chance of fertilisation. Further studies are underway to test the hypothesised connection between spindle birefringence and developmental capacity of oocytes/embryos