256 research outputs found

    Thermally Induced Losses in Ultra-Cold Atoms Magnetically Trapped Near Room-Temperature Surfaces

    Get PDF
    We have measured magnetic trap lifetimes of ultra-cold Rb87 atoms at distances of 5-1000 microns from surfaces of conducting metals with varying resistivity. Good agreement is found with a theoretical model for losses arising from near-field magnetic thermal noise, confirming the complications associated with holding trapped atoms close to conducting surfaces. A dielectric surface (silicon) was found in contrast to be so benign that we are able to evaporatively cool atoms to a Bose-Einstein condensate by using the surface to selectively adsorb higher energy atoms.Comment: Improved theory curve eliminates discrepancy. JLTP in pres

    Alkali Adsorbate Polarization on Conducting and Insulating Surfaces Probed with Bose-Einstein Condensates

    Get PDF
    A magnetically trapped 87Rb Bose-Einstein condensate is used as a sensitive probe of short-range electrical forces. In particular, the electric polarization of, and the subsequent electric field generated by, 87Rb adsorbates on conducting and insulating surfaces is measured by characterizing perturbations to the magnetic trapping potential using high quality factor condensate excitations. The nature of the alterations to the electrical properties of Rb adsorbates is studied on titanium (metal) and silicon (semiconductor) surfaces, which exhibit nearly identical properties, and on glass (insulator), which displays a smaller transitory electrical effect. The limits of this technique in detecting electrical fields and ramifications for measurements of short-range forces near surfaces are discussed

    Weather Factors Influencing Winter Roosts of American Crows in Central Iowa

    Get PDF
    We investigated the effects of season and weather on the winter roosting behavior of American Crows (Corvus brachyrhynchos) in central Iowa from January through March 2006. The peak number of birds recorded at a roost in Ames, Story County was 9,000+ in early February, and the number of individuals entering the roost decreased through February and March. Crows tended to enter the roost later in the day as winter neared completion. High wind speed and low light intensity caused individual to enter the roost earlier in the day. Temperature did not affect arrival time of crows. Wind speed, light intensity, and temperature did not significantly affect total number of individuals entering the roost (P \u3e 0.05). However, all three factors were negatively correlated to total number of birds on the roost (-0.20, -0.25, and -0.18 respectively). This research improves our understanding of the roost dynamics of an abundant urban wildlife species, which may eventually be used to manage interactions between humans and wildlife in an urban setting

    Recent progress in the discovery of macrocyclic compounds as potential anti-infective therapeutics

    Full text link
    Novel therapeutic strategies are urgently needed for the treatment of serious diseases caused by viral, bacterial and parasitic infections, because currently used drugs are facing the problem of rapidly emerging resistance. There is also an urgent need for agents that act on novel pathogen-specific targets, in order to expand the repertoire of possible therapies. The high throughput screening of diverse small molecule compound libraries has provided only a limited number of new lead series, and the number of compounds acting on novel targets is even smaller. Natural product screening has traditionally been very successful in the anti-infective area. Several successful drugs on the market as well as other compounds in clinical development are derived from natural products. Amongst these, many are macrocyclic compounds in the 1-2 kDa size range. This review will describe recent advances and novel drug discovery approaches in the anti-infective area, focusing on synthetic and natural macrocyclic compounds for which in vivo proof of concept has been established. The review will also highlight the Protein Epitope Mimetics (PEM) technology as a novel tool in the drug discovery process. Here the structures of naturally occurring antimicrobial and antiviral peptides and proteins are used as starting points to generate novel macrocyclic mimetics, which can be produced and optimized efficiently by combinatorial synthetic methods. Several recent examples highlight the great potential of the PEM approach in the discovery of new anti-infective agents

    A trapped-ion local field probe

    Full text link
    We introduce a measurement scheme that utilizes a single ion as a local field probe. The ion is confined in a segmented Paul trap and shuttled around to reach different probing sites. By the use of a single atom probe, it becomes possible characterizing fields with spatial resolution of a few nm within an extensive region of millimeters. We demonstrate the scheme by accurately investigating the electric fields providing the confinement for the ion. For this we present all theoretical and practical methods necessary to generate these potentials. We find sub-percent agreement between measured and calculated electric field values

    Interparticle interactions:Energy potentials, energy transfer, and nanoscale mechanical motion in response to optical radiation

    Get PDF
    In the interactions between particles of material with slightly different electronic levels, unusually large shifts in the pair potential can result from photoexcitation, and on subsequent electronic excitation transfer. To elicit these phenomena, it is necessary to understand the fundamental differences between a variety of optical properties deriving from dispersion interactions, and processes such as resonance energy transfer that occur under laser irradiance. This helps dispel some confusion in the recent literature. By developing and interpreting the theory at a deeper level, one can anticipate that in suitable systems, light absorption and energy transfer will be accompanied by significant displacements in interparticle separation, leading to nanoscale mechanical motion

    Towards surface quantum optics with Bose-Einstein condensates in evanescent waves

    Full text link
    We present a surface trap which allows for studying the coherent interaction of ultracold atoms with evanescent waves. The trap combines a magnetic Joffe trap with a repulsive evanescent dipole potential. The position of the magnetic trap can be controlled with high precision which makes it possible to move ultracold atoms to the surface of a glass prism in a controlled way. The optical potential of the evanescent wave compensates for the strong attractive van der Waals forces and generates a potential barrier at only a few hundred nanometers from the surface. The trap is tested with Rb Bose-Einstein condensates (BEC), which are stably positioned at distances from the surfaces below one micrometer

    Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier?

    Get PDF
    Mountain ranges, deserts, ice fields and oceans generally act as barriers to the movement of land-dependent animals, often profoundly shaping migration routes. We used satellite telemetry to track the southward flights of bar-tailed godwits (Limosa lapponica baueri), shorebirds whose breeding and non-breeding areas are separated by the vast central Pacific Ocean. Seven females with surgically implanted transmitters flew non-stop 8117–11 680 km (10 153±1043 s.d.) directly across the Pacific Ocean; two males with external transmitters flew non-stop along the same corridor for 7008–7390 km. Flight duration ranged from 6.0 to 9.4 days (7.8±1.3 s.d.) for birds with implants and 5.0 to 6.6 days for birds with externally attached transmitters. These extraordinary non-stop flights establish new extremes for avian flight performance, have profound implications for understanding the physiological capabilities of vertebrates and how birds navigate, and challenge current physiological paradigms on topics such as sleep, dehydration and phenotypic flexibility. Predicted changes in climatic systems may affect survival rates if weather conditions at their departure hub or along the migration corridor should change. We propose that this transoceanic route may function as an ecological corridor rather than a barrier, providing a wind-assisted passage relatively free of pathogens and predators

    Observation of the thermal Casimir force

    Full text link
    Quantum theory predicts the existence of the Casimir force between macroscopic bodies, due to the zero-point energy of electromagnetic field modes around them. This quantum fluctuation-induced force has been experimentally observed for metallic and semiconducting bodies, although the measurements to date have been unable to clearly settle the question of the correct low-frequency form of the dielectric constant dispersion (the Drude model or the plasma model) to be used for calculating the Casimir forces. At finite temperature a thermal Casimir force, due to thermal, rather than quantum, fluctuations of the electromagnetic field, has been theoretically predicted long ago. Here we report the experimental observation of the thermal Casimir force between two gold plates. We measured the attractive force between a flat and a spherical plate for separations between 0.7 μ\mum and 7 μ\mum. An electrostatic force caused by potential patches on the plates' surfaces is included in the analysis. The experimental results are in excellent agreement (reduced χ2\chi^2 of 1.04) with the Casimir force calculated using the Drude model, including the T=300 K thermal force, which dominates over the quantum fluctuation-induced force at separations greater than 3 μ\mum. The plasma model result is excluded in the measured separation range.Comment: 6 page
    corecore