28 research outputs found

    Adenosine Triphosphate Stimulates Aquifex aeolicus MutL Endonuclease Activity

    Get PDF
    BACKGROUND:Human PMS2 (hPMS2) homologues act to nick 5' and 3' to misincorporated nucleotides during mismatch repair in organisms that lack MutH. Mn(++) was previously found to stimulate the endonuclease activity of these homologues. ATP was required for the nicking activity of hPMS2 and yPMS1, but was reported to inhibit bacterial MutL proteins from Thermus thermophilus and Aquifex aeolicus that displayed homology to hPMS2. Mutational analysis has identified the DQHA(X)(2)E(X)(4)E motif present in the C-terminus of PMS2 homologues as important for endonuclease activity. METHODOLOGIES/PRINCIPAL FINDINGS:We examined the effect ATP had on the Mn(++) induced nicking of supercoiled pBR322 by full-length and mutant A. aeolicus MutL (Aae MutL) proteins. Assays were single time point, enzyme titration experiments or reaction time courses. The maximum velocity for MutL nicking was determined to be 1.6+/-0.08x10(-5) s(-1) and 4.2+/-0.3x10(-5) s(-1) in the absence and presence of ATP, respectively. AMPPNP stimulated the nicking activity to a similar extent as ATP. A truncated Aae MutL protein composed of only the C-terminal 123 amino acid residues was found to nick supercoiled DNA. Furthermore, mutations in the conserved C-terminal DQHA(X)(2)E(X)(4)E and CPHGRP motifs were shown to abolish Aae MutL endonuclease activity. CONCLUSIONS:ATP stimulated the Mn(++) induced endonuclease activity of Aae MutL. Experiments utilizing AMPPNP implied that the stimulation did not require ATP hydrolysis. A mutation in the DQHA(X)(2)E(X)(4)E motif of Aae MutL further supported the role of this region in endonclease activity. For the first time, to our knowledge, we demonstrate that changing the histidine residue in the conserved CPHGRP motif abolishes endonucleolytic activity of a hPMS2 homologue. Finally, the C-terminal 123 amino acid residues of Aae MutL were sufficient to display Mn(++) induced nicking activity

    The Role of UPF0157 in the Folding of M. tuberculosis Dephosphocoenzyme A Kinase and the Regulation of the Latter by CTP

    Get PDF
    BACKGROUND:Targeting the biosynthetic pathway of Coenzyme A (CoA) for drug development will compromise multiple cellular functions of the tubercular pathogen simultaneously. Structural divergence in the organization of the penultimate and final enzymes of CoA biosynthesis in the host and pathogen and the differences in their regulation mark out the final enzyme, dephosphocoenzyme A kinase (CoaE) as a potential drug target. METHODOLOGY/PRINCIPAL FINDINGS:We report here a complete biochemical and biophysical characterization of the M. tuberculosis CoaE, an enzyme essential for the pathogen's survival, elucidating for the first time the interactions of a dephosphocoenzyme A kinase with its substrates, dephosphocoenzyme A and ATP; its product, CoA and an intrinsic yet novel inhibitor, CTP, which helps modulate the enzyme's kinetic capabilities providing interesting insights into the regulation of CoaE activity. We show that the mycobacterial enzyme is almost 21 times more catalytically proficient than its counterparts in other prokaryotes. ITC measurements illustrate that the enzyme follows an ordered mechanism of substrate addition with DCoA as the leading substrate and ATP following in tow. Kinetic and ITC experiments demonstrate that though CTP binds strongly to the enzyme, it is unable to participate in DCoA phosphorylation. We report that CTP actually inhibits the enzyme by decreasing its Vmax. Not surprisingly, a structural homology search for the modeled mycobacterial CoaE picks up cytidylmonophosphate kinases, deoxycytidine kinases, and cytidylate kinases as close homologs. Docking of DCoA and CTP to CoaE shows that both ligands bind at the same site, their interactions being stabilized by 26 and 28 hydrogen bonds respectively. We have also assigned a role for the universal Unknown Protein Family 0157 (UPF0157) domain in the mycobacterial CoaE in the proper folding of the full length enzyme. CONCLUSIONS/SIGNIFICANCE:In view of the evidence presented, it is imperative to assign a greater role to the last enzyme of Coenzyme A biosynthesis in metabolite flow regulation through this critical biosynthetic pathway

    Mucoidy, Quorum Sensing, Mismatch Repair and Antibiotic Resistance in Pseudomonas aeruginosa from Cystic Fibrosis Chronic Airways Infections

    Get PDF
    Survival of Pseudomonas aeruginosa in cystic fibrosis (CF) chronic infections is based on a genetic adaptation process consisting of mutations in specific genes, which can produce advantageous phenotypic switches and ensure its persistence in the lung. Among these, mutations inactivating the regulators MucA (alginate biosynthesis), LasR (quorum sensing) and MexZ (multidrug-efflux pump MexXY) are the most frequently observed, with those inactivating the DNA mismatch repair system (MRS) being also highly prevalent in P. aeruginosa CF isolates, leading to hypermutator phenotypes that could contribute to this adaptive mutagenesis by virtue of an increased mutation rate. Here, we characterized the mutations found in the mucA, lasR, mexZ and MRS genes in P. aeruginosa isolates obtained from Argentinean CF patients, and analyzed the potential association of mucA, lasR and mexZ mutagenesis with MRS-deficiency and antibiotic resistance. Thus, 38 isolates from 26 chronically infected CF patients were characterized for their phenotypic traits, PFGE genotypic patterns, mutations in the mucA, lasR, mexZ, mutS and mutL gene coding sequences and antibiotic resistance profiles. The most frequently mutated gene was mexZ (79%), followed by mucA (63%) and lasR (39%) as well as a high prevalence (42%) of hypermutators being observed due to loss-of-function mutations in mutL (60%) followed by mutS (40%). Interestingly, mutational spectra were particular to each gene, suggesting that several mechanisms are responsible for mutations during chronic infection. However, no link could be established between hypermutability and mutagenesis in mucA, lasR and mexZ, indicating that MRS-deficiency was not involved in the acquisition of these mutations. Finally, although inactivation of mucA, lasR and mexZ has been previously shown to confer resistance/tolerance to antibiotics, only mutations in MRS genes could be related to an antibiotic resistance increase. These results help to unravel the mutational dynamics that lead to the adaptation of P. aeruginosa to the CF lung

    The Structure of Deoxy- and Oxy-leghaemoglobin from Lupin

    No full text
    The leghaemoglobins have oxygen affinities 11 to 24 times higher than that of sperm whale myoglobin, due mainly to higher rates of association. To find out why, we have determined the structures of deoxy- and oxy-leghaemoglobin II of the lupin at 1.7 Å resolution. Results confirm the general features found in previous X-ray analyses of this protein. The unique feature that has now emerged is the rotational freedom of the proximal histidine. In deoxy-leghaemoglobin the imidazole oscillates between two alternative orientations, eclipsing either the lines to 0.32 Å from the mean porphyrin plane.The only feature capable of accounting for the high on-rate of the reaction with oxygen are the mobilities of the proximal histidine and distal histidine residues in deoxy-leghaemoglobin. The eclipsed positions of the proximal histidine in deoxy -leghaemoglobin maximize steric hindrance with the porphyrin nitrogen atoms and minimize π→p electron donation, while its staggered position in oxy-leghaemoglobin reverses both these effects. Together with the oscillation of the imidazole between the two orientations, these two factors may reduce the activation energy for the reaction of leghaemoglobin with oxygen. The distal histidine is in a fixed position in the haem pocket in the crystal, but must be swinging in and out of the pocket at a high rate in solution to allow the oxygen to enter

    Functions of the Mismatch Repair Gene mutS from Acinetobacter sp. Strain ADP1

    No full text
    The genus Acinetobacter encompasses a heterogeneous group of bacteria that are ubiquitous in the natural environment due in part to their ability to adapt genetically to novel challenges. Acinetobacter sp. strain ADP1 (also known as strain BD413) is naturally transformable and takes up DNA from any source. Donor DNA can be integrated into the chromosome by recombination provided it possesses sufficient levels of nucleotide sequence identity to the recipient's DNA. In other bacteria, the requirement for sequence identity during recombination is partly due to the actions of the mismatch repair system, a key component of which, MutS, recognizes mismatched bases in heteroduplex DNA and, along with MutL, blocks strand exchange. We have cloned mutS from strain ADP1 and examined its roles in preventing recombination between divergent DNA and in the repair of spontaneous replication errors. Inactivation of mutS resulted in 3- to 17-fold increases in transformation efficiencies with donor sequences that were 8 to 20% divergent relative to the strain ADP1. Strains lacking MutS exhibited increased spontaneous mutation frequencies, and reversion assays demonstrated that MutS preferentially recognized transition mismatches while having little effect on the repair of transversion mismatches. Inactivation of mutS also abolished the marker-specific variations in transforming efficiency seen in mutS(+) recipients where transition and frameshift alleles transformed at eightfold lower frequencies than transversions or large deletions. Comparison of the MutS homologs from five individual Acinetobacter strains with those of other gram-negative bacteria revealed that a number of unique indels are conserved among the Acinetobacter amino acid sequences

    Guanine- 5-carboxylcytosine base pairs mimic mismatches during DNA replication

    Get PDF
    The genetic information encoded in genomes must be faithfully replicated and transmitted to daughter cells. The recent discovery of consecutive DNA conversions by TET family proteins of 5-methylcytosine into 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine (5caC) suggests these modified cytosines act as DNA lesions, which could threaten genome integrity. Here, we have shown that although 5caC pairs with guanine during DNA replication in vitro, G·5caC pairs stimulated DNA polymerase exonuclease activity and were recognized by the mismatch repair (MMR) proteins. Knockdown of thymine DNA glycosylase increased 5caC in genome, affected cell proliferation via MMR, indicating MMR is a novel reader for 5caC. These results suggest the epigenetic modification products of 5caC behave as DNA lesions
    corecore