14 research outputs found

    Suppressed basal mitophagy drives cellular aging phenotypes that can be reversed by a p62-targeting small molecule.

    Get PDF
    Selective degradation of damaged mitochondria by autophagy (mitophagy) is proposed to play an important role in cellular homeostasis. However, the molecular mechanisms and the requirement of mitochondrial quality control by mitophagy for cellular physiology are poorly understood. Here, we demonstrated that primary human cells maintain highly active basal mitophagy initiated by mitochondrial superoxide signaling. Mitophagy was found to be mediated by PINK1/Parkin-dependent pathway involving p62 as a selective autophagy receptor (SAR). Importantly, this pathway was suppressed upon the induction of cellular senescence and in naturally aged cells, leading to a robust shutdown of mitophagy. Inhibition of mitophagy in proliferating cells was sufficient to trigger the senescence program, while reactivation of mitophagy was necessary for the anti-senescence effects of NAD precursors or rapamycin. Furthermore, reactivation of mitophagy by a p62-targeting small molecule rescued markers of cellular aging, which establishes mitochondrial quality control as a promising target for anti-aging interventions. [Abstract copyright: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

    Soluble Chloroplast Enzyme Cleaves preLHCP Made in Escherichia coli

    No full text

    Nicotinamide metabolism modulates the proliferation/differentiation balance and senescence of human primary keratinocytes

    No full text
    Nicotinamide (NAM) is the main precursor of nicotinamide adenine dinucleotide (NAD+), a coenzyme essential for DNA repair, glycolysis, and oxidative phosphorylation. NAM has anti-aging activity on human skin, but the underlying mechanisms of action are unclear. Using 3-dimensional organotypic skin models, we show that NAM inhibits differentiation of the upper epidermal layers and maintains proliferation in the basal layer. In 2-dimensional culture, NAM reduces the expression of early and late epidermal differentiation markers and increases the proliferative capacity of human primary keratinocytes. This effect is characterized by elevated clonogenicity and an increased proportion of human primary keratinocyte stem cell (holoclones) compared to controls. By contrast, preventing the conversion of NAM to NAD+ using FK866 leads to premature human primary keratinocyte differentiation and senescence, together with a dramatic drop in glycolysis and cellular adenosine triphosphate levels while oxidative phosphorylation is moderately affected. All these effects are rescued by addition of NAM, known to compete with FK866, which suggests that conversion to NAD+ is part of the mechanistic response. These data provide insights into the control of differentiation, proliferation, and senescence by NAM and NAD+ in skin. They may lead to new therapeutic advances for skin conditions characterized by dysregulated epidermal homeostasis and premature skin aging, such as photoaging.ASTAR (Agency for Sci., Tech. and Research, S’pore)Published versio

    The vitamin A ester retinyl propionate has a unique metabolic profile and higher retinoid‐related bioactivity over retinol and retinyl palmitate in human skin models

    Get PDF
    Human skin is exposed daily to environmental stressors, which cause acute damage and inflammation. Over time this leads to morphological and visual appearance changes associated with premature aging. Topical vitamin A derivatives such as retinol (ROL), retinyl palmitate (RPalm), and retinyl propionate (RP) have been used to reverse these changes and improve the appearance of skin. This study investigated a stoichiometric comparison of these retinoids using in vitro and ex vivo skin models. Skin biopsies were treated topically to compare skin penetration and metabolism. Treated keratinocytes were evaluated for transcriptomics profiling and hyaluronic acid (HA) synthesis and treated 3D epidermal skin equivalents were stained for epidermal thickness, Ki67, and filaggrin. A retinoic acid receptor‐alpha (RARα) reporter cell line was used to compare retinoid activation levels. Results from ex vivo skin found that RP and ROL have higher penetration levels compared to RPalm. RP is metabolized primarily into ROL in the viable epidermis and dermis whereas ROL is esterified into RPalm and metabolized into the inactive retinoid 14‐hydroxy‐4,14‐retro‐retinol (14‐HRR). RP treatment yielded higher RARα activation and HA synthesis levels than ROL whereas RPalm had a null effect. In keratinocytes, RP and ROL stimulated similar gene expression patterns and pathway theme profiles. In conclusion, RP and ROL show a similar response directionality whereas RPalm response was inconsistent. Additionally, RP has a consistently higher magnitude of response compared with ROL or RPalm

    Early onset of senescence and imbalanced epidermal homeostasis across the decades in photoexposed human skin: Fingerprints of inflammaging

    Get PDF
    Inflammaging is a theory of ageing which purports that low-level chronic inflammation leads to cellular dysfunction and premature ageing of surrounding tissue. Skin is susceptible to inflammaging because it is the first line of defence from the environment, particularly solar radiation. To better understand the impact of ageing and photoexposure on epidermal biology, we performed a system biology-based analysis of photoexposed face and arm, and photoprotected buttock sites, from women between the ages of 20s to 70s. Biopsies were analysed by histology, transcriptomics, and proteomics and skin surface biomarkers collected from tape strips. We identified morphological changes with age of epidermal thinning, rete ridge pathlength loss and stratum corneum thickening. The SASP biomarkers IL-8 and IL-1RA/IL1-α were consistently elevated in face across age and cis/trans-urocanic acid were elevated in arms and face with age. In older arms, the DNA damage response biomarker 53BP1 showed higher puncti numbers in basal layers and epigenetic ageing were accelerated. Genes associated with differentiation and senescence showed increasing expression in the 30s whereas genes associated with hypoxia and glycolysis increased in the 50's. Proteomics comparing 60's vs 20's confirmed elevated levels of differentiation and glycolytic-related proteins. Representative immunostaining for proteins of differentiation, senescence and oxygen sensing/hypoxia showed similar relationships. This system biology-based analysis provides a body of evidence that young photoexposed skin is undergoing inflammaging. We propose the presence of chronic inflammation in young skin contributes to an imbalance of epidermal homeostasis that leads to a prematurely aged appearance during later life

    Autophagy promotes cell and organismal survival by maintaining NAD(H) pools

    No full text
    Autophagy is an essential catabolic process that promotes clearance of surplus or damaged intracellular components 1 . As a recycling process, autophagy is also important for the maintenance of cellular metabolites during periods of starvation 2 . Loss of autophagy is sufficient to cause cell death in animal models and is likely to contribute to tissue degeneration in a number of human diseases including neurodegenerative and lysosomal storage disorders 3–7 . However, it remains unclear which of the many cellular functions of autophagy primarily underlies its role in cell survival. Here we have identified a critical role of autophagy in the maintenance of nicotinamide adenine dinucleotide (NAD + /NADH) levels. In respiring cells, loss of autophagy caused NAD(H) depletion resulting in mitochondrial membrane depolarisation and cell death. We also found that maintenance of NAD(H) is an evolutionary conserved function of autophagy from yeast to human cells. Importantly, cell death and reduced viability of autophagy-deficient animal models can be partially reversed by supplementation with an NAD(H) precursor. Our study provides a mechanistic link between autophagy and NAD(H) metabolism and suggests that boosting NAD(H) levels may be an effective intervention strategy to prevent cell death and tissue degeneration in human diseases associated with autophagy dysfunction
    corecore