Experimental Dermatology

Early onset of senescence and imbalanced epidermal homeostasis across the decades in photoexposed human skin: fingerprints of inflammaging.

Journal:	Experimental Dermatology
Manuscript ID	EXD-22-0133.R1
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	11-Jun-2022
Complete List of Authors:	Jarrold, Bradley B.; The Procter & Gamble Company Cincinnati OH USA Tan, Christina Yan Ru; A*STAR Skin Research Labs Singapore Singapore Ho, Chin Yee; A*STAR Skin Research Labs Singapore Singapore Soon, Ai Ling; A*STAR Skin Research Labs Singapore Singapore Lam, TuKiet; Keck MS & Proteomics Resource Yale School of Medicine New Haven CT USA Yang, Xiaojing; Zymo Research Corporation Irvine CA USA Nguyen, Calvin; Zymo Research Corporation Irvine CA USA Guo, Wei; Zymo Research Corporation Irvine CA USA Chew, Yap Ching; Zymo Research Corporation Irvine CA USA DeAngelis, Yvonne; The Procter & Gamble Company Cincinnati OH USA Costello, Lydia; Durham University Durham UK De Los Santos Gomez, Paola; Durham University Durham UK Przyborski, Stefan ; Durham University Durham UK Bellanger, Sophie; A*STAR Skin Research Labs Singapore Singapore Dreesen, Oliver; A*STAR Skin Research Labs Singapore Singapore Kimball, Alexa ; Beth Israel Deaconess Medical Center and Harvard Medical School Boston MA USA Oblong, John; The Procter & Gamble Company Cincinnati OH USA
Area of Expertise:	Skin aging, Keratinocyte biology and epidermal physiology, Photobiology and photodermatology
Additional Keywords:	AGEING, BIOMARKERS, EPIDERMAL DIFFERENTIATION, INFLAMMATION, SENESCENCE
Keywords:	Epidermis, photoexposed, inflammation, inflammaging, epidermal morphology

Early onset of senescence and imbalanced epidermal homeostasis across the decades in photoexposed human skin: fingerprints of inflammaging.

Bradley B. Jarrold¹, Christina Yan Ru Tan², Chin Yee Ho², Ai Ling Soon², TuKiet T. Lam³, Xiaojing Yang⁴, Calvin Nguyen⁴, Wei Guo⁴, Yap Ching Chew⁴, Yvonne M. DeAngelis¹, Lydia Costello⁵, Paola De Los Santos Gomez⁵, Stefan Przyborski⁵, Sophie Bellanger², Oliver Dreesen², Alexa B. Kimball⁶, and John E. Oblong¹

¹The Procter & Gamble Company, Cincinnati, OH, USA; ²A*STAR Skin Research Labs, Singapore, Singapore; ³Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA; ⁴Zymo Research Corporation, Irvine, CA, USA; ⁵Durham University, Durham, UK; ⁶Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA

Correspondence: John E. Oblong, The Procter & Gamble Company, Cincinnati, OH, 45040, USA. E-mail: <u>oblong.je@pg.com</u>

Short title: Chronic inflammation remains elevated across decades in a 20's to 70's year old cohort.

Keywords: Epidermis, photoexposed, inflammation, inflammaging, epidermal morphology, senescence, differentiation, glycolysis, hypoxia, and epigenetics

Abbreviation list

- LCM: laser capture microdissection
- SASP: senescence-associated secretory phenotype
- **DEJ**: dermal epidermal junction
- UEA-1: Ulex Europaeus-I Lectin
- 53BP1: p53-binding protein 1
- IL-8: interleukin-8
- **IL-1** α : interleukin-1 α
- IL-1RA: interleukin-1 receptor antagonist
- FLG: filaggrin
- INV: involucrin
- ALOX12B: arachidonate 12-lipoxygenase,12R
- LOR: loricrin
- KRT2: keratin 2
- KRT14: keratin 14
- CALML3: calmodulin-like protein 3
- SPINK5: serine protease inhibitor Kazai-type 5
- CSTB: cystatin B
- KLF9: Krüppel-like factor 9
- **IGF1R**: insulin like growth factor 1 receptor
- LCE2C: late cornified envelope 2C
- CAPN1: calpain 1

CDKN2A: cyclin dependent kinase inhibitor 2A
CRYAB: alpha-crystallin B chain
CXCR2: cytokine receptor type 2/IL8RB
mTOR: mammalian target of rapamycin
RBL2: retinoblastoma-like protein 2
SIRT1: sirtuin 1
HIF1 α : hypoxia inducible factor 1, subunit alpha
HBA: hemoglobin- α
HBB: hemoglobin-β
HMOX1: heme oxygenase 1
SLC7A11: cystine/glutamate antiporter
ALDOA: aldolase A
KDM3A: lysine demethylase 3A
KDM5A: lysine demethylase 5A
SPRY2: Sprouty homolog 2
LDHA: lactate dehydrogenase A
PGM1: phosphoglucomutase 1

ABSTRACT

Inflammaging is a theory of aging which purports that low-level chronic inflammation leads to cellular dysfunction and premature aging of surrounding tissue. Skin is susceptible to inflammaging because it is the first line of defense from the environment, particularly solar

> radiation. To better understand the impact of aging and photoexposure on epidermal biology, we performed a systems biology-based analysis of photoexposed face and arm, and photoprotected buttock sites, from women between the ages of 20's to 70's. Biopsies were analyzed by histology, transcriptomics, and proteomics and skin surface biomarkers collected from tape strips. We identified morphological changes with age of epidermal thinning, rete ridge pathlength loss, and stratum corneum thickening. The SASP biomarkers IL-8 and IL-1RA/IL1- α were consistently elevated in face across age and *cis/trans*-urocanic acid were elevated in arms and face with age. In older arms, the DNA damage response biomarker 53BP1 showed higher puncti numbers in basal layers and epigenetic aging was accelerated. Genes associated with differentiation and senescence showed increasing expression in the 30's whereas genes associated with hypoxia and glycolysis increased in the 50's. Proteomics comparing 60's vs 20's confirmed elevated levels of differentiation and glycolytic related proteins. Representative immunostaining for proteins of differentiation, senescence, and oxygen sensing/hypoxia showed similar relationships. This systems biology-based analysis provides a body of evidence that young photoexposed skin is undergoing inflammaging. We propose the presence of chronic inflammation in young skin contributes to an imbalance of epidermal homeostasis that leads to a prematurely aged appearance during later life.

1 INTRODUCTION

The skin is one of the largest organs of the human body, providing protection from external insults such as solar radiation, pollution, chemicals, and particulate matter. Like all organs of the body, the skin is susceptible to aging, resulting in structural and

functional changes which may be accelerated further by environmental insults.¹ This premature aging of skin leads to cellular and morphological changes that accumulate over time and ultimately affect the skin's appearance, functionality, and homeostatic state. This homeostasis is dependent on an organized and timely renewal process, initiated by basal keratinocytes which proliferate and differentiate to ultimately transform into corneocytes that comprise the stratum corneum. An imbalance in this process has implications on skin's appearance, health, and response to stress. Thus, it is essential to understand these changes to identify mechanistic intervention targets that would prevent and repair premature aging and maintain skin health and appearance.

We previously reported findings from a large base study that evaluated biopsies collected from photoexposed face and dorsal forearms as well as photoprotected buttock sites of Caucasian females across age decades spanning 20's to the 70's, demonstrating that age impacts a wide range of molecular processes in skin.² Given that a low grade chronic inflammatory state is hypothesized to be a significant contributor to premature aging in the inflammaging theory, we asked whether this phenomenon could be observed in our previously reported skin biopsy study and investigated its potential impact on epidermal biology and homeostasis. A systems biology-based analysis of skin surface biomarkers, transcriptomics, proteomics, metabolomics, histology, and immunostaining confirmed that there is underlying chronic inflammation in photoexposed face skin that remains elevated across the decades. Primarily in photoexposed skin, we found an imbalance in epidermal homeostasis beginning in the 20's to 30's and elevation of senescence-related components in the 30's to 40's. A subsequent increase of oxygen sensing/hypoxia and metabolic shift

towards glycolysis occurs in the 50's. Additionally, there is a higher epigenetic aging rate in 60's when comparing to the 30's and is further elevated by photoexposure. Based on these findings, we propose that photoexposed skin undergoes inflammaging which may play a role in the molecular and morphological changes that ultimately lead to a photoaged appearance and less healthy state of skin.

2 MATERIALS AND METHODS

The detailed protocols and statistical analysis are described in Supplemental Materials Per and Methods.

3 RESULTS

3.1 Age-associated changes in epidermal morphology

We first performed a histomorphometric analysis of the structural compartments of the epidermis from buttock, arm, and face sites across age groups. With age, the overall thickness of the stratum corneum increases (Figure 1A) whereas the epidermal layer becomes thinner (Figure 1B), and the rete ridge path length ratio decreases (Figure 1C). Comparison of the mean data between the 20's and each decade showed that these changes become statistically significant in the older age groups (Supplemental Table 1). A representative histological stain from a 20's and a 60's year old face highlights these structural changes (Figure 1D). In an older age sample, we observed relatively lower detection of microcapillary structures using staining against UEA-1, a lectin that binds to endothelial related cells.³ A representative image shows the

differential staining pattern below the basement membrane (Figure 1E, white arrows) as well as staining in the stratum granulosum and corneum. This pattern is similar to what has been previously reported in skin.³ The structural changes of thickening of the stratum corneum and the thinning of the epidermis suggest an imbalance between proliferation and differentiation that changes with age across all body sites.

3.2 Proteomics analysis shows elevated presence of proteins associated with differentiation and glycolysis in 60's aged dorsal forearm epidermis over 20's age group.

To better understand these measured changes in epidermal structure with age, LCM isolated epidermal sections from 20's and 60's dorsal arms were processed and analysed by label free quantitative mass spectrometry. Out of 367 proteins identified, 83 showed a significant difference (p<0.1) in levels when comparing between the two age groups (Supplemental Table 2). Of the 83 proteins, 24 proteins were associated with epidermal differentiation and metabolism/oxygen sensing (Table 1). 23 of these had a similar directional relationship with their representative gene expression pattern with age. The exception is calpain 1 (CAPN1) which showed no significant change in expression levels across the decades (data not shown). Interestingly, we also detected a higher numerical level of hemoglobin- α (p=0.092) and hemoglobin- β (p=0.134, data not shown) present in the older group.

Page 8 of 110

3.3 Imbalance in epidermal differentiation/proliferation increases with age in photoexposed epidermis.

To further understand the age-associated changes in epidermal morphology and corresponding protein level changes, we manually curated transcriptomics data for genes encoding proteins involved in epidermal differentiation and proliferation, including the epidermal differentiation complex, keratins, protease inhibitors, proteases, calcium binding proteins/AMP (antimicrobial peptides), proliferation, and late cornified envelope proteins (Figure 2A).^{6,7} Statistical analysis of changes across the decades between 20's and 70's showed a pattern of elevated expression with age of differentiation associated genes in the photoexposed dorsal arm and face sites in most of these groups (Figure 2A, pink coloration). In contrast, genes associated with proliferation showed a decline in expression with age decades across all three body sites (Figure 2A, blue coloration). Trace profiles of representative probe sets from face of filaggrin (FLG), involucrin (IVL), arachidonate 12-lipoxygenase, 12R (ALOX12B), loricrin (LOR), keratin 2 (KRT2), keratin 14 (KRT14), calmodulin-like protein 3 (CALML3), serine protease inhibitor Kazai-type 5 (SPINK5), cystatin B (CSTB), Krüppel-like factor 9 (KLF9), insulin like growth factor 1 receptor (IGF1R), and late cornified envelope 2C (LCE2C) show the relative expression changes across the decades (Figure 2B). Interestingly, the late cornified envelope proteins did not show as significant of a pattern when comparing across 20's and 70's but exhibits a significant increase up to the 50's and the reversal from 50's to 70's. To further visualize the gene expression profiles, we immunostained for several of these proteins in representative samples from young and old face and arm sites. Immunostaining for filaggrin showed heightened levels in the

upper granular/stratum corneum layers in a representative older age face site (Figure 2C) and to a lesser extent for involucrin and loricrin (Figure 2D and 2E). The basal keratin 14 marker showed a higher overall level of detection in a representative older age arm site (Figure 2F) and a modestly higher level of detection of the suprabasal marker keratin 10 (Figure 2G).

3.4 The IL-1RA/IL-1 α ratio and IL-8 remain elevated across the decades in photoexposed facial skin, the *cis/trans* urocanic acid and 53BP1 DNA damage foci are detected in photoexposed sites, and epigenetic age is higher with age in photoexposed arm sites.

In addition to proteomics analysis on LCM-derived epidermal sections, we tested for the presence of the senescence-associated secretory phenotype (SASP) inflammatory biomarkers IL-8 and the IL-1RA/IL-1 α ratio on the surface of skin.⁸ Analysis of tape strip extractions showed the levels of both biomarkers were elevated in photoexposed face compared to dorsal arm and buttock sites (Figure 3A and 3B). Interestingly, the levels on face remained elevated across the age groups. It was surprising that we did not detect elevated levels of these cytokines in the photoexposed dorsal arm sites. To better understand this difference between the two sites, we analysed for the UV-sensitive metabolite ratio of *cis/trans*-urocanic acid. We showed a significant elevation in both face and arm compared to buttock consistent across the decades (Figure 3C). We also stained arm and buttock sites from both young and old for 53BP1, an indicator of DNA damage response induced by UV-irradiation.^{9,10} Quantification showed

significantly more foci in the basal layer of aged arm compared to young, while very few foci were detected in buttock (Figure 3D-F). The buttock sites in either young or old did not show any significant increase in DNA damage. Additionally, we quantitated epigenetic age levels, which is based on DNA methylation levels from thousands of aging related locis.¹¹ We showed that both body sites showed elevated epigenetic age levels in the 60's when compared with the 30's, and significantly accelerated aging in arm sites compared to buttock sites (Figure 3G). The elevated levels of these photosensitive markers with age in arm and face sites support that both sites undergo a certain degree of photodamage. The muted levels of IL-8 and the IL-1RA/IL-1 α ratio may be due to unknown physiological differences that merit further investigation.

3.5 Senescence and inflammation are elevated with age in photoexposed epidermis

The detection from facial skin surface of elevated levels of IL-8 which remains consistently high (Figure 3B) suggests that this site may present a higher senescence/inflammation rate than arm. As shown previously, we report that the senescence associated gene CDKN2A is elevated with age across all three body sites.² To better understand the correlation there may be between senescence, the heightened presence of the SASP-associated inflammatory biomarkers, and the epidermal morphological changes, we manually curated transcriptomics data for a subset of genes encoding for senescence and inflammatory associated proteins. We found an overall pattern of increased expression across the decades between 20's and 70's in both the

photoexposed arm and face sites, with more genes being upregulated in face (Figure 4A). In agreement, cyclin dependent kinase inhibitor 2A (CDKN2A), alpha-crystallin B chain (CRYAB), cytokine receptor type 2/IL8RB (CXCR2) were upregulated upon aging (Figure 4B). Similarly, several genes that have been reported to be reduced upon senescence (RBL2, SIRT, LMNB1) showed a general pattern of lowered expression (Figure 4A).¹²⁻¹⁴ CDKN2A is known to encode several proteins involved in senescence and linkages to cancer, and aging, including p16^{INK4A}.¹⁵⁻¹⁷ To further visualize the expression patterns, we immunostained biopsy sections from young and old face sites for p16^{INK4a} and observed higher number of p16-positive cells in aged photoexposed facial skin throughout the basal and suprabasal layers (Figure 4C and 4D, yellow arrows).

3.6 An oxygen sensing/hypoxic fingerprint and metabolic reprograming increases with age in epidermis

The proteomics-based detection of elevated levels of several glycolytic enzymes in 60's aged epidermal arm LCM samples suggests the epidermis was undergoing a metabolic shift. A shift to glycolysis is a hallmark process of cells when exposed to hypoxic conditions. The morphological changes with age of increased stratum corneum thickness, decrease in rete ridge path length ratio, and less vasculature detection could impact oxygen bioavailability in the epidermis. Finally, the increased expression and protein detection of hemoglobin- α further suggests an oxygen sensing response by the epidermis. Thus, we manually curated from transcriptomics data a subset of genes

Page 12 of 110

> encoding proteins sensitive to oxygen tension or associated with cellular responses to hypoxia. These genes showed an increased expression pattern across the decades between 20's and 70's in arm, buttock, and face sites (Figure 5A, pink coloration). Consistent with this, genes encoding proteins known to negatively respond to hypoxia showed decreased expression across the decades, primarily in the photoexposed forearm and face sites (Figure 5A, blue coloration). Genes encoding glycolytic enzymes were also analysed and several genes were found to have elevated expression patterns across the decades between 20's and 70's in arm and face sites (Figure 5A, red coloration). To further illustrate the statistical findings, representative expression traces are shown for hypoxia inducible factor 1, subunit alpha (HIF1A, a master regulator of cellular response to hypoxic conditions), hemoglobin- β (HBB), heme oxygenase 1 (HMOX1), cystine/glutamate antiporter (SLC7A11), aldolase A (ALDOA), lysine demethylase 3A (KDM3A), lysine demethylase 5A (KDM5A), Sprouty homolog 2 (SPRY2), lactate dehydrogenase A (LDHA), and phosphoglucomutase 1 (PGM1) (Figure 5B). To further understand HIF1A and hemoglobin gene expression, we immunostained for HIF-1 α and hemoglobin- α . A representative image shows staining of HIF-1 α in nuclei of young face sites but higher expression was detected in older aged face sites (Figure 5C and 5D, red arrows). Representative images of hemoglobin- α staining in both arm and face sites highlight an elevated staining intensity throughout the upper granular/stratum corneum layers in arm (Figure 5E) and face (Figure 5F) from older individuals as compared to younger. Interestingly, there was no observable staining increase in the basal layer and through the dermis, further supporting that the presence of hemoglobin- α was epidermally derived and not erythroid.

4 DISCUSSION

The skin is the first line of defense protecting the body from environmental stressors such as solar radiation and pollution. Daily exposure to sunlight is one of the more significant environmental insults that induces DNA damage, oxidative stress, and inflammation in skin. Human skin must maintain robust repair capabilities to prevent cumulative damage triggered by these stressors. However, with age this ability is diminished, and the onset of senescence further hinders the skin's capacity to mitigate stress-induced inflammation and can lead to the presence of chronic low-level inflammation.¹⁸ This phenotype is a key feature of inflammaging. The evidence for the presence of inflammaging in skin has been previously reviewed and it was highlighted that while there are clear signs of an inflammaging microenvironment in skin, further work is needed to better understand it's role on skin aging.¹⁹

To better understand the role of inflammaging on skin aging, we utilized a systems-biology based approach to investigate biological samples collected from photoprotected and exposed female body sites spanning 6 decades of age. A previous report found that patterns of gene expression accelerated with aging in Caucasian females and differed in a subgroup that appeared exceptionally youthful based on image analysis of facial appearance.² The current study focused on the epidermal skin compartment and employed a systems biology-based approach to increase our understanding and identify potential intervention strategies to mitigate premature aging. Our findings provide a body of evidence that photoexposed facial skin appears to be in an inflammaging microenvironment due to the presence of elevated chronic

Page 14 of 110

> inflammation which, in turn, could be a factor in part that leads to an imbalance in epidermal homeostasis starting in the 30's as measured via histology, transcriptomics, and proteomics (Figure 6). This suggests that targeting inflammation in younger aged skin may be a promising intervention approach to mitigate the molecular and morphological changes that lead to a photoaged appearance of skin and impact on underlying skin health.

> The histomorphologic analysis in this study found that the epidermis undergoes significant changes with age, including stratum corneum thickening, implying that there may be a stronger barrier in older aged skin. While counter-intuitive, several reported studies have shown that trans-epidermal water loss values decrease in older aged subjects, suggesting that the barrier integrity improves with age.²⁰ However, the underlying health of the skin plays a role to ensure optimal repair response kinetics to damaging agents. Older aged skin has been shown to have a slower and weaker response profile to damage such as wounding and tape strip removal.^{21, 22} We also show that with age the epidermis becomes thinner, the rete ridge path length flattens, and these changes correlate with changes in gene expression and protein levels associated with differentiation and proliferation, similar to *in vitro* data previously published.²³ Expression changes occur in a large proportion of genes encoding proteins associated with the epidermal complex, keratins, proteases, protease inhibitors, calcium bindings proteins/AMP, and late cornified envelope proteins. Additionally, these changes are more apparent in the photoexposed arm and face sites than the buttock site, confirming previous *in vitro* data where UVB irradiation led to increased levels of late differentiation markers.²⁴ This imbalance in differentiation and

proliferation processes appears to shift in the 30's and could be a factor in the observed morphological changes detected starting in the 40's. For example, the representative expression traces for FLG, LOR, ALOX12B, KRT2, CALML3, SPINK5, and CSTB all show a similar pattern of increased expression beginning in the 20's to 30's and continuing to increase across the decades. It is worth noting that some of these markers show alterations of this trend in the 50's, presumably due in part to hormonal changes as recorded in the previous study.² This is particularly highlighted in the respective traces presented as well as the overall expression patterns for the late cornified envelope proteins which showed significant changes in expression between the 20's and 50's but lost significance when comparing between the 20's and 70's. Several of the proteins expressed by these genes were also detected via proteomics profiling between the photoexposed arm of young and old subjects. A similar proteomics profiling has been reported in which the authors used tape strip collection to quantitate the levels of surface proteins associated with differentation.²⁵ Their findings are similar to the ones presented here with the exception that several proteins showed contrasting reduced levels in photoexposed skin compared to the elevated levels of those same proteins in our study. It should be pointed out that the age comparison between the 20's and 60's in this work was selected due to reversal of expression levels in the older 70's cohort. Future work will include additional analyses across all the age groups. Overall, there is an apparent correlation between the differentiation associated gene expression changes that begins in the 20's and correlates with the morphological changes that become significantly measurable starting in the 40's. This suggests an

Page 16 of 110

imbalance in epidermal homeostasis which could impact its response profile to environmental insults and maintenance of normal cellular function.

To better understand the inflammatory and photoexposure status of the subjects in this study, we evaluated for the presence of inflammatory and photosensitive biomarkers isolated from the skin's surface. Detection of elevated levels of IL-8 has been shown to be elevated in eczema, atopic dermatitis, and psoriasis skin and in 3D skin models after UVB exposure. ²⁶⁻²⁸ We found elevated levels of IL-8 on photoexposed facial skin surface sites that remain elevated across age groups. The ratio of IL-1RA/IL-1 α present on the skin's surface is known to be an indicator of underlying inflammation associated with skin dermatitis conditions and UV exposure.²⁹⁻ ³¹ Relative to impact of age and photoexposure on this inflammatory biomarker, it was reported that the IL-1RA/IL-1 α ratio was elevated in photoexposed face compared to non-exposed upper inner arm and remained constant across age groups.²⁹ Relatedly, we show similar patterns when comparing between photoexposed face where the IL-RA/IL-I α ratio was consistently high and consistently low in photoprotected buttock sites across the decades. Surprisingly, we did not see an increase in these cytokines in photoexposed dorsal arm samples since we had previously reported there are significant histological indications of photoaging.² We show that several biomarkers associated with photoexposure are increased in arm sites, including the cis/transurocanic acid ratio, foci of the DNA damage response marker 53BP1 that is sensitive to UV exposure, and epigenetic age derived from methylation levels of DNA, an indicator of epigenetic aging.^{11,32-34} These methylation patterns are similar to what has been previously reported where the biopsies were enzymatically separated into epidermis

 and dermis fractions in contrast to LCM in our study.³⁵ Overall, this supports that the photoexposed arms undergo photodamage. We do not believe the lower levels of IL-8 or the IL-1RA/IL-1 α ratio on photoexposed arm or buttock sites are an artefact since we performed the analysis in two independent experiments from duplicate tapes. The difference could reflect a dose response or a level of chronic exposure or, alternatively, facial skin is among the thinnest in the body and may be more susceptible to injury. While overall our results support the hypothesis that photoexposed skin is in a heightened state of inflammation, and that inflammation is present early in the 20's and remains persistent across the decades, future work is needed to understand the physiological relevance in photodamaged arms. Overall, the implications of this constant inflammatory pressure could be an indicator of skin inflammaging that leads to the changes in gene expression patterns and correlating protein levels in photoexposed skin.

We previously reported CDKN2A, a gene that encodes for proteins associated with senescence induction, to be elevated with age.² CDKN2A is known to encode for p14^{ARF}, p15^{INK4B}, and p16^{INK4A}, all of which are involved in senescence and play significant roles in cancer and aging, including in skin.¹⁵⁻¹⁷ In the current study we wished to better understand this correlation beyond CDKN2A and performed a focused transcriptomics profiling of select genes encoding for proteins associated with regulation or induction of senescence in skin.³⁶ It has been established that photoexposure can cause keratinocytes to prematurely enter senescence and these cells can be characterized by secretion of an altered secretome called the senescence-associated

Page 18 of 110

secretory phenotype (SASP), enriched with pro-inflammatory cytokines such as IL-6, IL-8, and IL-1 β .⁸

The elevated skin surface levels of IL-8 early in the 20's age cohort on photoexposed face sites supports there may be an early onset of a SASP-associated phenotype in photodamaged facial skin. We see significant elevated levels of expression of genes encoding proteins associated with senescence in the photoexposed sites. For example, GLB1 encodes SA- β -gal (beta-galactosidase), a well-known biomarker of senescence in numerous tissues, including skin.³⁶ Several chemokine receptors were observed to increase in expression levels with age in the photoexposed arm and face sites. CXCR1 and CXCR2 encode receptor proteins that bind with IL-8 and showed elevated expression in both arm and face.³⁷ Interestingly this provides a potential correlation of inflammatory response with the elevated levels of IL-8 present on the skin's surface. A survey of candidate SASP components from a comparison between *in vitro* senescence models and *in vivo* tissue and fluid samples showed the elevated presence of CCL22, IL15, and MMP9 under senescent-impacted conditions.³⁸ The mammalian target of rapamycin (mTOR) is suggested to be a master regulator of metabolite sensing that impacts senescence induction and overall cellular aging.^{39, 40} We show in both photoexposed epidermal sites an increase in mTOR expression levels with age (Figure 4A) that becomes significant in the 50's compared to the 20's for face (Figure 4B). CREG (cellular repressor of E1A-stimulated genes 1) coexpression with p16^{INK4a} can further enhance senescence than either expressed alone.⁴¹ Recently, CRYAB and HMOX1 have been proposed to be senolytic targets in humans cell models.⁴² Interestingly, it was also demonstrated that HMOX1 expression

Page 19 of 110

levels were increased during differentiation, which supports a similar correlation as measured in our study.⁴³ As reported here, we observe a significant increase in the expression patterns of these genes starting in the 30's and continuing into the 70's in photoexposed facial epidermis sites. In addition, we evaluated genes that encode proteins that mitigate senescence, including RBL2, SIRT1, SIRT3, SIR4, and TP53.^{12,44-46} These show varying patterns of decreased expression in the epidermis of photoexposed sites with significance starting in the 50's and 60's. Finally, we immunostained for p16^{INK4A} and detected nuclear localized puncti in both basal and spinous layers. Interestingly, it has been reported that p16^{INK4a} is primarily detected in epidermal melanocytes by immunohistochemistry methods.⁴⁷ However, this may not be an exclusive scenario since it has also been reported that p16^{INK4a} can be detected in keratinocytes in both basal and suprabasal layers, findings that are similar to ours.⁴⁸ These findings suggest that future work is needed to better define the role of this important senescence marker in the skin individual cell types.

In total, the data presented here supports that photoexposed skin is undergoing an accumulation of senescent cells with age. The chronic presence of the SASP factor IL-8 could be a causative indicator of senescence but further work is needed to establish cause and effect linked to the imbalance in differentiation-/proliferation and morphological changes.⁴⁹ The implications of skin undergoing these changes in inflammation and senescence due to photoexposure also has potential implications on overall body health. A recent review suggests there is a correlation between the accumulation of senescent cells in the skin and a negative impact on overall systemic health and longevity that occurs via the hypothalamic-pituitary-adrenal axis.⁵⁰ Future

work is planned to further correlate the gene expression and protein detection across individuals and body sites in this data set and from a recent clinical study.

Oxygenation of the epidermis occurs via passive diffusion from direct contact with atmospheric oxygen and from microcapillary beds intertwined underneath the basement membrane.⁵¹ This may explain why the epidermis is considered to have a relatively low oxygen tension estimated to range between 0.3-8%, and why the epidermis could be considered hypoxic in contrast to the highly vascularized dermis where oxygen levels are estimated to be >7%.^{51,52} The morphological changes measured in the epidermis with age suggested to us a further limitation of oxygen supply due to the longer diffusion path length through the thickened stratum corneum, as well as the reduced surface area interface with microcapillary beds from reduction of rete ridge undulation pattern. It has been previously reported that aging can lead to a measured increase in hypoxic-related response profiles.⁵³ That work utilized suction fluid blisters from young and older aged upper arms for transcriptomics profiling. In our study, we utilized the sensitivity of LCM dissection to localize the epidermis in both photoprotected and photoexposed skin sites for further investigation and an overall systems-biology body of evidence. The impact of a lowered oxygen tension in the epidermis is controlled in large part by hypoxia-inducible factor-1 α (HIF-1 α), a transcription factor and master regulator of cellular response to oxygen tension condition.⁵⁴ In addition to HIF-1 α , an expanded transcriptomics profiling of select genes encoding proteins associated with regulation or responsiveness to oxygen tension changes or hypoxia supports our hypothesis that photoaged skin is transitioning into a more hypoxic microenvironment. For example, hypoxic conditions have been shown to

induce HMOX1 gene expression at 1% O_2 in vitro and 7% O_2 in vivo and this was mediated by HIF-1 α activity.⁵⁵ Gene expression of the CXCL16-CXCR6 axis, CXCR4, and CXCL12 have been reported to be elevated under chronic hypoxic conditions.⁵⁶ PDSS1 encodes for decaprenyl diphosphate synthase subunit 1 and was recently identified as a member of a hypoxia signature in hepatocellular carcinoma cells.⁵⁷ We identified several genes whose expression patterns are negatively regulated under hypoxic conditions. Lysine demethylase 3A (KDM3A) has been reported to regulate PGC1 α (PPARGC1A) and is inhibited under hypoxic conditions.⁵⁸ Silencing of SPRY2 gene expression was shown to correlate with elevated levels of HIF-1 α .⁵⁹ Prolonged exposure to hypoxic conditions is known to shift cellular metabolism to a greater reliance on glycolysis due to the more anaerobic conditions.⁶⁰ We observed a similar shift based on elevated expression of genes encoding enzymes involved in glycolysis such as ALDOA, ENO1, LDHA, PGM1, and PKM. This was further supported by the detection of higher protein levels for ADLOA and PKM in older aged arm samples compared to younger aged samples. Expression for the glucose transporters SLC2A1, SLC2A3, and SLC7A11 were also elevated with age, which have been reported to be stimulated in response to hypoxia.^{56,61} Interestingly, we detected elevated expression of hemoglobin- α and - β (HBA and HBB) and a numerically greater level of hemoglobin- α protein in older aged photoexposed arms. Of note, we did not see any significant staining for hemoglobin- α through the dermis and neither did we identify hemoglobin differences from proteomics of dermal sections (data not shown). While hemoglobin is well known for its role in O_2 and CO_2 gas exchange in red blood cells, an increasing number of non-erythroid tissues have been reported to endogenously express

> hemoglobin.⁶² The exact function of hemoglobin in non-erythroid tissue is not clear but it has been speculated it could include regulation of heme, iron and oxygen levels.⁶³ It has also been proposed that hemoglobin plays a role in response to oxidative stress by helping protect against ROS damage.⁶⁴ Overall, the significant increase in expression of genes associated with hypoxia and glycolytic enzymes suggests a phenotype reflecting a hypoxic microenvironment in photoexposed skin and, to a weaker extent, in non-exposed skin. The reported range of O₂ tension in the epidermis has a broad range between 0.3-8%^{51,52}, and we would propose that in this study cohort the tension was significantly lower in the older age group compared with the younger group. Further work is needed to validate these findings with quantitation of differences in oxygen content in the epidermal compartment as a function of age and photoexposure.

Limitations exist in this study since it is not clear on the causal relationship between the molecular changes ascribed and the cascade across the decades to the morphological changes.

5 CONCLUSIONS

In summary, this systems biology-based approach to analyse inflammatory and photosensitive biomarkers, proteomics, transcriptomics, and immunostaining strongly suggests that photoexposed facial skin is undergoing inflammaging that begins as early as in the 20's and that multiple biologic pathways are affected in this process. We propose that the chronic presence of inflammation and SASP early in age may contribute to the molecular reprogramming, imbalance of epidermal homeostasis, and morphological changes. The presence of heightened senescence, oxygen

sensing/hypoxic response, epigenetic drift, and metabolic shift may also play roles leading to this imbalance. While this work provides further evidence on the role of senescence and inflammation in impacting aging in photoexposed skin, further evidence is still required.^{65, 66} Finally, the detection of non-erythroid-derived hemoglobin in the epidermis is a novel finding that merits further evaluation on its function and role in skin biology and aging.

ACKNOWLEDGEMENTS

We acknowledge the assistance of John C. Bierman in facilitating tape strip analysis.

CONFLICT OF INTEREST

The authors state no conflict of interest. XY, CN, WG, and YCC are full-time employees of Zymo Research Corporation. BBJ, YMD, and JEO are full-time employees of The Procter & Gamble Company.

AUTHOR CONTRIBUTIONS

BBJ, CYRT, CYH, TTL, XY, LC, SP, SB, OD, and JEO conceived the experiments; BBJ, CYRT, CYH, ALS, TTL, XY, CN, WG, YCC, YMD, LC, and PSG performed experiments and analysed the data. JEO wrote the manuscript. All authors reviewed/edited the manuscript.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

John E. Oblong https://orcid.org/0000-0001-7628-6242

REFERENCES

- Yaar M, Gilchrest BA. Photoaging: mechanism, prevention and therapy. *Br J Dermatol*. 2007; **157**:874-887.
- Kimball AB, Alora-Palli MB, Tamura M, Mullins LA, Soh C, Binder RL, Houston NA, Conley ED, Tung JY, Annunziata NE, Bascom CC, Isfort RJ, Jarrold BB, Kainkaryam R, Rocchetta HL, Swift DD, Tiesman JP, Toyama K, Xu J, Yan X, Osborne R. Age-induced and photoinduced changes in gene expression profiles in facial skin of Caucasian females across 6 decades of age. *J Am Acad Dermatol.* 2018; **78**(1):29-39.
- Holthöfer H, Virtanen I, Kariniemi AL, Hormia M, Linder E, Miettinen A. Ulex europaeus I lectin as a marker for vascular endothelium in human tissues. *Lab Invest.* 1982; **47**(1): 60-66.
- Bennett MF, Robinson MK, Baron ED, Cooper KD. Skin immune systems and inflammation: protector of the skin or promoter of aging? *J Inv Derm Symp Proc.* 2008; **13:1**5-19.
- 5. Zhuang Y, Lyga J. Inflammaging in skin and other tissues the roles of complement system and macrophage. *Inflamm Allergy Drug Targets.* 2014; **13**:153-161.

- Kypriotou M, Huber M, Hohl D. The human epidermal differentiation complex: cornified envelope precursors, S100 proteins and the 'fused genes' family. Exp Dermatol. 2012 Sep;21(9):643-9. doi:
- Rousselle P, Gentilhomme E, Neveux Y. (2017) Markers of Epidermal Proliferation and Differentiation. In: Humbert P, Fanian F, Maibach H, Agache P. (eds) Agache's Measuring the Skin. Springer, Cham. https://doi.org/10.1007/978-3-319-32383-1_37.
- Fitsiou E, Pulido T, Campisi J, Alimirah F, Demaria M. Cellular senescence and the senescence-associated secretory phenotype as drivers of skin photoaging. *J Invest Dermatol.* 2021; **141**(4S):1119-1126.
- 9. Shibata A, Jeggo PA. Roles for 53BP1 in the repair of radiation-induced DNA double strand breaks. *DNA Repair (Amst).* 2020; **93**:102915.
- Lee, J. W., Ratnakumar, K., Hung, K. F., Rokunohe, D., & Kawasumi, M. (2020).
 Deciphering UV-induced DNA Damage Responses to Prevent and Treat Skin
 Cancer. *Photochemistry and photobiology*, *96*(3), 478–499.
- 11. Horvath S. DNA methylation age of human tissues and cell types. *Genome Biol.*2013; **14**(10):R115.
- 12. Xu C, Wang L, Fozouni P. *et al.* SIRT1 is downregulated by autophagy in senescence and ageing. *Nat Cell Biol.* 2020; **22**: 1170–1179.

13. Freund A, Laberge RM, Demaria M, Campisi J. Lamin B1 loss is a senescence-
associated biomarker. <i>Mol Biol Cell</i> . 2012; 23 (11):2066-2075.
14. Dreesen O, Chojnowski A, Ong PF, Zhao TY, Common JE, Lunny D, Lane EB, Lee
SJ, Vardy LA, Stewart CL, Colman A. Lamin B1 fluctuations have differential effects
on cellular proliferation and senescence. <i>J Cell Biol.</i> 2013; 200 (5):605-617.
15. Ressler S, Bartkova J, Niederegger H, Bartek J, Scharffetter-Kochanek K, Jansen-
Dürr P, Wlaschek M. p16 ^{INK4A} is a robust in vivo biomarker of cellular aging in human
skin. <i>Aging Cell.</i> 2006; 5 (5):379-389.
16. Waaijer ME, Parish WE, Strongitharm BH, van Heemst D, Slagboom PE, de Craen
AJ, Sedivy JM, Westendorp RG, Gunn DA, Maier AB. The number of p16 ^{INK4a}
positive cells in human skin reflects biological age. <i>Aging Cell.</i> 2012; 11 (4):722-725.
17. LaPak KM. Burd CE. The Molecular Balancing Act of p16 ^{INK4a} in Cancer and Aging
Mol Cancer Res 2014; 12 (2):167-183.
18. Ho CY, Dreesen O. Faces of cellular senescence in skin aging. Mech Ageing Dev.
2021; 198 :111525.
19. Pilkington SM, Bulfone-Paus S, Griffiths CEM, Watson REB. Inflammaging and the
Skin. <i>J Invest Dermatol.</i> 2021; 141 (4S):1087-1095.

- 20. Wilhelm KP, Cua AB, Maibach HI. Skin aging. Effect on transepidermal water loss, stratum corneum hydration, skin surface pH, and casual sebum content. *Arch Dermatol.* 1991; **127**(12):1806-1809.
- 21. Ghadially R, Brown BE, Sequeira-Martin SM, Feingold KR, Elias PM. The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. *J Clin Invest.* 1995; **95**(5):2281-2290.
- 22. Gosain A, DiPietro LA. Aging and wound healing. *World J Surg.* 2004; 28(3):321-326.
- 23. Tan CL, Chin T, Tan CYR, Rovito HA, Quek LS, Oblong JE, Bellanger S.
 Nicotinamide Metabolism Modulates the Proliferation/Differentiation Balance and Senescence of Human Primary Keratinocytes. *J Invest Dermatol.* 2019;
 139(8):1638-1647.
- 24. Tan CYR, Tan CL, Chin T, Morenc M, Ho CY, Rovito HA, Quek LS, Soon AL, Lim JSY, Dreesen O, Oblong JE, Bellanger S. Nicotinamide Prevents UVB- and Oxidative Stress–Induced Photoaging in Human Primary Keratinocytes. *J Invest Dermatol.* 2022; **142**(6):1670-1681.

- 25. Voegeli R, Monneuse JM, Schoop R, Summers B, Rawlings AV. The effect of photodamage on the female Caucasian facial stratum corneum corneome using mass spectrometry-based proteomics. Int *J Cosmet Sci.* 2017; **39**(6):637-652.
 - 26. Sticherling M, Bornscheuer E, Schröder J-M, Christophers E. Localization of NAP1/IL-8 immunoreactivity in normal and psoriatic skin. *J Invest Dermatol* 1991; 96: 2630.
 - 27. Sticherling M, Bornscheuer E, Schröder JM, Christophers E. Immunohistochemical studies on NAP-1/IL-8 in contact eczema and atopic dermatitis. *Arch Dermatol Res* 1992; **284**: 82-85.
- 28. Amarbayasgalan T, Takahashi H, Dekio I, Morita E. Interleukin-8 content in the stratum corneum as an indicator of the severity of inflammation in the lesions of atopic dermatitis. *Int Arch Allergy Immunol.* 2013; **160**(1):63-74.
- 29. Hirao T, Aoki H, Yoshida T, Sato Y, Kamoda H. Elevation of interleukin 1 receptor antagonist in the stratum corneum of sun-exposed and ultraviolet B-irradiated human skin. *J Invest Dermatol.* 1996;**106**(5):1102-1107.
- 30. Terui T, Hirao T, Sato Y, Uesugi T, Honda M, Iguchi M, Matsumura N, Kudoh K, Aiba S, Tagami H. An increased ratio of interleukin-1 receptor antagonist to interleukin-1alpha in inflammatory skin diseases. *Exp Dermatol.* 1998; **7**(6):327-334.

- 31. Perkins MA, Osterhues MA, Farage MA, Robinson MK. A non-invasive method to assess skin irritation and compromised skin conditions using simple tape adsorption of molecular markers of inflammation. *Skin Res Technol.* 2001; **7**(4):227-237.
- 32. de Fine Olivarius F, Wulf HC, Therkildsen P, Poulsen T, Crosby J, Norval M. Urocanic acid isomers: relation to body site, pigmentation, stratum corneum thickness and photosensitivity. *Arch Dermatol Res.* 1997; **289**(9):501-505.
- 33. Uehara F, Miwa S, Tome Y, Hiroshima Y, Yano S, Yamamoto M, Efimova E, Matsumoto Y, Maehara H, Bouvet M, Kanaya F, Hoffman RM. Comparison of UVB and UVC effects on the DNA damage-response protein 53BP1 in human pancreatic cancer. *J Cell Biochem.* 2014; **115**(10):1724-1728.
- 34. Bártová E, Legartová S, Dundr M, Suchánková J. A role of the 53BP1 protein in genome protection: structural and functional characteristics of 53BP1-dependent DNA repair. *Aging (Albany NY)*. 2019; **11**(8):2488-2511.
- 35. Grönniger E, Weber B, Heil O, Peters N, Stäb F, Wenck H, Korn B, Winnefeld M, Lyko F. Aging and chronic sun exposure cause distinct epigenetic changes in human skin. *PLoS Genet.* 2010; 6(5):e1000971.

36. Wang AS, Dreesen O. Biomarkers of Cellular Senescence and Skin Aging. *Front Genet.* 2018; **9**:247.

2 3	
4 5 6	37. Varney ML, Johansson SL, Singh RK. Distinct expression of CXCL8 and its
7 8 0	receptors CXCR1 and CXCR2 and their association with vessel density and
10 11 12 13	aggressiveness in malignant melanoma. <i>Am J Clin Pathol</i> . 2006; 125 (2):209-216.
14 15 16	38. Schafer MJ, Zhang X, Kumar A, Atkinson EJ, Zhu Y, Jachim S, Mazula DL, Brown
17 18	AK, Berning M, Aversa Z, Kotajarvi B, Bruce CJ, Greason KL, Suri RM, Tracy RP,
19 20	Cummings SR, White TA, LeBrasseur NK. The senescence-associated secretome
21 22 23 24	as an indicator of age and medical risk. <i>JCI Insight</i> . 2020; 5 (12):e133668.
25 26 27	39. Xu S, Cai Y, Wei Y. mTOR Signaling from Cellular Senescence to Organismal
28 29 30 31	Aging. Aging Dis. 2013; 5(4):263-273.
32 33 34	40. Huang K, Fingar DC. Growing knowledge of the mTOR signaling network. Semin
35 36 37 38	<i>Cell Dev Biol.</i> 2014; 36 :79-90.
39 40	41. Moolmuang B, Tainsky MA. CREG1 enhances p16 ^{INK4a_} induced cellular
41 42 43 44	senescence. Cell Cycle. 2011; 10(3):518-530.
45 46 47	42. Limbad C, Doi R, McGirr J, Ciotlos S, Perez K, Clayton ZS, Daya R, Seals DR,
48 49	Campisi J, Melov S. Senolysis induced by 25-hydroxycholesterol targets CRYAB in
50 51 52 53 54	multiple cell types. <i>iScience</i> . 2022; 25 (2):103848.
55 56 57	
58	31

43. Numata I, Okuyama R, Memezawa A, Ito Y, Takeda K, Furuyama K, Shibahara S, Aiba S. Functional expression of heme oxygenase-1 in human differentiated epidermis and its regulation by cytokines. *J Invest Dermatol.* 2009; **129**(11):2594-2603.

- 44. Alessio N, Bohn W, Rauchberger V, Rizzolio F, Cipollaro M, Rosemann M, Irmler M, Beckers J, Giordano A, Galderisi U. Silencing of RB1 but not of RB2/P130 induces cellular senescence and impairs the differentiation potential of human mesenchymal stem cells. Cell Mol Life Sci. 2013 May;70(9):1637-51.
- 45. Kida Y, Goligorsky MS. Sirtuins, Cell Senescence, and Vascular Aging. *Can J Cardiol.* 2016; **32**(5):634-641.
- 46. Kim RH, Kang MK, Kim T, Yang P, Bae S, Williams DW, Phung S, Shin KH, Hong C, Park NH. Regulation of p53 during senescence in normal human keratinocytes. *Aging Cell*. 2015; **14**(5):838-846.
- 47. Victorelli S, Lagnado A, Halim J, Moore W, Talbot D, Barrett K, Chapman J, Birch J, Ogrodnik M, Meves A, Pawlikowski JS, Jurk D, Adams PD, van Heemst D, Beekman M, Slagboom PE, Gunn DA, Passos JF. Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. *EMBO J.* 2019; **38**(23):e101982.
- 48. Pavey S, Conroy S, Russell T, Gabrielli B. Ultraviolet radiation induces p16CDKN2A expression in human skin. Cancer Res. 1999 Sep 1;59(17):4185-9

 Demaria M, Desprez PY, Campisi J, Velarde MC. Cell autonomous and non- autonomous effects of senescent cells in the skin. <i>J Invest Dermatol.</i> 2015; 135(7):1722-1726.
50. Franco AC, Aveleira C, Cavadas C. Skin senescence: mechanisms and impact on whole-body aging. <i>Trends Mol Med.</i> 2022; 28 (2):97-109.
51. Stücker M, Struk A, Altmeyer P, Herde M, Baumgärtl H, Lübbers DW. The cutaneous uptake of atmospheric oxygen contributes significantly to the oxygen supply of human dermis and epidermis. <i>J Physiol.</i> 2002; 538 :985-994.
52. Evans SM, Schrlau AE, Chalian AA, Zhang P, Koch CJ. Oxygen levels in normal and previously irradiated human skin as assessed by EF5 binding. <i>J Invest Dermatol.</i> 2006; 126 (12):2596
53. Prahl S, Kueper T, Biernoth T, Wöhrmann Y, Münster A, Fürstenau M, Schmidt M, Schulze C, Wittern KP, Wenck H, Muhr GM, Blatt T. Aging skin is functionally anaerobic: importance of coenzyme Q10 for anti aging skin care. <i>Biofactors</i> . 2008; 32 (1-4):245-255.
54. Rezvani HR, Ali N, Nissen LJ, Harfouche G, de Verneuil H, Taïeb A, Mazurier F. HIF-1α in epidermis: oxygen sensing, cutaneous angiogenesis, cancer, and non- cancer disorders. <i>J Invest Dermatol.</i> 2011; 131 (9):1793-1805.

- 55. Lee PJ, Jiang BH, Chin BY, Iyer NV, Alam J, Semenza GL, Choi AM. Hypoxiainducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. *J Biol Chem.* 1997; **272**(9):5375-5381.
- 56. Korbecki J, Kojder K, Kapczuk P, Kupnicka P, Gawrońska-Szklarz B, Gutowska I, Chlubek D, Baranowska-Bosiacka I. The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors-A Review of Literature. *Int J Mol Sci.* 2021; **22**(2):843.
- 57. Zhang B, Tang B, Gao J, Li J, Kong L, Qin L. A hypoxia-related signature for clinically predicting diagnosis, prognosis and immune microenvironment of hepatocellular carcinoma patients. *J Transl Med*. 2020; **18**(1):342.
- 58. Qian X, Li X, Shi Z, Bai X, Xia Y, Zheng Y, Xu D, Chen F, You Y, Fang J, Hu Z, Zhou Q, Lu Z. KDM3A Senses Oxygen Availability to Regulate PGC-1α-Mediated Mitochondrial Biogenesis. *Mol Cell.* 2019; **76**(6):885-895.
- 59. Hicks KC, Patel TB. Sprouty2 Protein Regulates Hypoxia-inducible Factor-α (HIFα)
 Protein Levels and Transcription of HIFα-responsive Genes. *J Biol Chem*. 2016;
 291(32):16787-16801.
- 60. Czyzyk-Krzeska MF. Molecular aspects of oxygen sensing in physiological adaptation to hypoxia. *Respir Physiol*. 1997; **110**(2-3):99-111.

61. Airley RE, Mobasheri A. Hypoxic regulation of glucose transport, anaerobic
metabolism and angiogenesis in cancer: novel pathways and targets for anticancer
therapeutics. <i>Chemotherapy</i> . 2007; 53 (4):233-256.
62. Saha D, Patgaonkar M, Shroff A, Ayyar K, Bashir T, Reddy KV. Hemoglobin
expression in nonerythroid cells: novel or ubiquitous? Int J Inflam. 2014; 803237.
63. H. Dassen R, Kamps C, Punyadeera F, Dijcks A, de Goeij A, Ederveen G,
Dunselman P, Groothuis. Haemoglobin expression in human endometrium, Human
<i>Reproduction</i> , 2008; 23 (3): 635–641.
64. Saha D, Koli S, Reddy KVR. Transcriptional regulation of Hb- α and Hb- β through
nuclear factor E2-related factor-2 (Nrf2) activation in human vaginal cells: A novel
mechanism of cellular adaptability to oxidative stress. Am J Reprod Immunol. 2017;
77(6).
65. Low E, Alimohammadiha G, Smith LA, Costello LF, Przyborski SA, von Zglinicki T,
Miwa S. How good is the evidence that cellular senescence causes skin ageing?
Ageing Res Rev. 2021; 71 :101456.
66. Lee YI, Choi S, Roh WS, Lee JH, Kim TG. Cellular Senescence and Inflammaging in
the Skin Microenvironment. Int J Mol Sci. 2021; 22(8):3849.
Early onset of senescence and imbalanced epidermal homeostasis across the decades in photoexposed human skin: fingerprints of inflammaging. Inflammaging in human photoexposed skin: Early onset of

senescence and imbalanced epidermal homeostasis across the decades.

Bradley B. Jarrold¹, Christina Yan Ru Tan², Chin Yee Ho², Ai Ling Soon², TuKiet T. Lam³, Xiaojing -Yang⁴, Calvin Nguyen⁴, Wei Guo⁴, Yap Ching Chew⁴, Yvonne M. DeAngelis¹, Lydia Costello⁵, Paola De Los Santos Gomez⁵, Stefan Przyborski⁵, Sophie Bellanger², Oliver Dreesen², Alexa B. Kimball⁶, and John E. Oblong¹

¹The Procter & Gamble Company, Cincinnati, OH, USA; ²A*STAR Skin Research Labs, Singapore, Singapore; ³Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA; ⁴Zymo Research Corporation, Irvine, CA, USA; ⁵Durham University, Durham, UK; ⁶Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA

Correspondence: John E. Oblong, The Procter & Gamble Company, Cincinnati, OH, 45040, USA. E-mail: <u>oblong.je@pg.com</u>

Short title: Chronic inflammation remains elevated across decades in a 20's to 70's year old cohort.

Zicz

Keywords: Epidermis, photoexposed, inflammation, inflammaging, epidermal morphology, senescence, differentiation, glycolysis, hypoxia, and epigenetics

Abbreviation list

- LCM: laser capture microdissection
- SASP: senescence-associated secretory phenotype
- **DEJ**: dermal epidermal junction
- UEA-1: Ulex Europaeus-I Lectin
- 53BP1: p53-binding protein 1
- IL-8: interleukin-8
- **IL-1** α : interleukin-1 α
- **IL-1RA:** interleukin-1 receptor antagonist
- FLG: filaggrin
- **INV**: involucrin
- ALOX12B: arachidonate 12-lipoxygenase,12R
- LOR: loricrin
- KRT2: keratin 2
- KRT14: keratin 14
- CALML3: calmodulin-like protein 3
- SPINK5: serine protease inhibitor Kazai-type 5
- CSTB: cystatin B

3
4
5
6
7
, 8
0
9
10
11
12
13
14
15
16
17
18
19
20
20
∠ I วว
22
23
24
25
26
27
28
29
30
31
32
32
31
24
35
36
37
38
39
40
41
42
43
44
45
46
40 17
+/ 10
4ð
49 50
50
51
52
53
54
55
56
57
58
50
22
οU

KLF9: Krüppel-like factor 9		
IGF1R: insulin like growth factor 1 receptor		
LCE2C: late cornified envelope 2C		
CAPN1: calpain 1		
CDKN2A: cyclin dependent kinase inhibitor 2A		
CRYAB: alpha-crystallin B chain		
CXCR2: cytokine receptor type 2/IL8RB		
mTOR: mammalian target of rapamycin		
RBL2: retinoblastoma-like protein 2		
SIRT1: sirtuin 1		
HIF1 α : hypoxia inducible factor 1, subunit alpha		
HBA: hemoglobin- α		
HBB: hemoglobin-β		
HMOX1: heme oxygenase 1		
SLC7A11: cystine/glutamate antiporter		
ALDOA: aldolase A		
KDM3A: lysine demethylase 3A		
KDM5A: lysine demethylase 5A		
SPRY2: Sprouty homolog 2		
LDHA: lactate dehydrogenase A		
PGM1: phosphoglucomutase 1		

ABSTRACT

Inflammaging is a theory of aging which purports that low-level chronic inflammation leads to cellular dysfunction and premature aging of surrounding tissue. Skin is susceptible to inflammaging because it is the first line of defense from the environment, particularly solar radiation. To better understand the impact of aging and photoexposure on epidermal biology. we performed a systems biology-based analysis of photoexposed face and arm, and photoprotected buttock sites, from women between the ages of 20's to 70's. Biopsies were analyzed by histology, transcriptomics, and proteomics and skin surface biomarkers collected from tape strips. We identified morphological changes with age of epidermal thinning, rete ridge pathlength loss, and stratum corneum thickening. The SASP biomarkers IL-8 and IL-1RA/IL1- α were consistently elevated in face across age and cis/trans-urocanic acid were elevated in arms and face with age. In older arms, the DNA damage response biomarker 53BP1 showed higher puncti numbers in basal layers and epigenetic aging was accelerated. Genes associated with differentiation and senescence showed increasing expression in the 30's whereas genes associated with hypoxia and glycolysis increased in the 50's. Proteomics comparing 60's vs 20's confirmed elevated levels of differentiation and glycolytic related proteins. Representative immunostaining for proteins of differentiation, senescence, and oxygen sensing/hypoxia shows showed similar relationships. This systems biology-based analysis provides a body of evidence that young photoexposed skin is undergoing inflammaging. We propose the presence of chronic inflammation in young skin contributes to an imbalance of epidermal homeostasis that leads to a prematurely aged appearance during later life.

1 INTRODUCTION

 The skin is <u>one of</u> the largest organs of the human body, providing protection from external insults such as solar radiation, pollution, chemicals, and particulate matter. Like all organs of the body, the skin is susceptible to aging, resulting in structural and functional changes which may be accelerated further by environmental insults.¹ This premature aging of skin leads to cellular and morphological changes that accumulate over time and ultimately affect the skin's appearance, functionality, and homeostatic state. This homeostasis is dependent on an organized and timely renewal process, initiated by basal keratinocytes which proliferate and differentiate to ultimately transform into corneocytes that comprise the stratum corneum. An imbalance in this process has implications on skin's appearance, health, and response to stress. Thus, it is essential to understand these changes to identify mechanistic intervention targets that would prevent and repair premature aging and maintain skin health and appearance.

We previously reported findings from a large base study that evaluated biopsies collected from photoexposed face and dorsal forearms as well as photoprotected buttock sites of Caucasian females across age decades spanning 20's to the 70's, demonstrating that age impacts a wide range of molecular processes in skin.² Given that a low grade chronic inflammatory state is hypothesized to be a significant contributor to premature aging in the inflammaging theory, we asked whether this phenomenon could be observed in our previously reported skin biopsy study and investigated its potential impact on epidermal biology and homeostasis. A systems biology-based analysis of skin surface biomarkers, transcriptomics, proteomics, metabolomics, histology, and immunostaining confirmed that there is underlying chronic

inflammation in photoexposed face skin that remains elevated across the decades. Primarily in photoexposed skin, we found there is an imbalance in epidermal homeostasis beginning in the 20's to 30's and elevation of senescence_-related components in the 30's to 40's. A subsequent increase of oxygen sensing/hypoxia and metabolic shift towards glycolysis occurs in the 50's. Additionally, there is a higher epigenetic aging rate in 60's when comparing to the 30's and is further elevated by photoexposure. Based on these findings, we propose that photoexposed skin undergoes inflammaging which may play a role in the molecular and morphological changes that ultimately lead to a photoaged appearance and less healthy state of skin.

2 MATERIALS AND METHODS

The detailed protocols and statistical analysis are described in Supplemental Materials and Methods.

3 RESULTS

3.1 Age-associated changes in epidermal morphology

We first performed a histomorphometric analysis of the structural compartments of the epidermis from buttock, arm, and face sites across age groups. With age, the overall thickness of the stratum corneum <u>increased increases</u> (Figure 1A) whereas the epidermal layer becomes thinner (Figure 1B), and the rete ridge path length ratio decreases (Figure 1C). Comparison of the mean data between the 20's and each decade showed that these changes become statistically significant in the older age

groups (Supplemental Table 1). A representative histological stain from a 20's and a 60's year old face highlights these structural changes (Figure 1D). In an older age sample, we observed relatively lower detection of microcapillary structures using staining against UEA-1, a lectin that binds to endothelial related cells.³ A representative image shows the differential staining pattern below the basement membrane (Figure 1E, white arrows) as well as staining in the stratum granulosum and corneum. This pattern is similar to what has been previously reported in skin.³ The structural changes of thickening of the stratum corneum and the thinning of the epidermis suggest an imbalance between proliferation and differentiation that changes with age across all body sites.

3.2 Proteomics analysis shows elevated presence of proteins associated with differentiation and glycolysis in 60's aged dorsal forearm epidermis over 20's age group.

To better understand these measured changes in epidermal structure with age, LCM isolated epidermal sections from 20's and 60's dorsal arms were processed and analysed by label free quantitative mass spectrometry. Out of 367 proteins identified, 83 showed a significant difference (p<0.1) in levels when comparing between the two age groups (Supplemental Table 2). Of the 83 proteins, 24 proteins were associated with epidermal differentiation and metabolism/oxygen sensing (Table 1). 23 of these had a similar directional relationship with their representative gene expression pattern with age. The exception is calpain 1 (CAPN1) which showed no significant change in

 expression levels across the decades (data not shown). Interestingly, we also detected a higher numerical level of hemoglobin- α (*p*=0.092) and hemoglobin- β (*p*=0.134, data not shown) present in the older group.

3.3 Imbalance in epidermal differentiation/proliferation increases with age in photoexposed epidermis.

To further understand the age-associated changes in epidermal morphology and corresponding protein level changes, we manually curated transcriptomics data for genes encoding for proteins involved in epidermal differentiation and proliferation. including the epidermal differentiation complex, keratins, protease inhibitors, proteases, calcium binding proteins/AMP (antimicrobial peptides), proliferation, and late cornified envelope proteins (Figure 2A).^{6,7} Statistical analysis of changes across the decades between 20's and 70's showed a pattern of elevated expression with age of differentiation associated genes in the photoexposed dorsal arm and face sites in most of these groups (Figure 2A, pink coloration). In contrast, genes associated with proliferation showed a decline in expression with age decades across all three body sites (Figure 2A, blue coloration). Trace profiles of representative probe sets from face of filaggrin (FLG), involucrin (IVL), arachidonate 12-lipoxygenase, 12R (ALOX12B), loricrin (LOR), keratin 2 (KRT2), keratin 14 (KRT14), calmodulin-like protein 3 (CALML3), serine protease inhibitor Kazai-type 5 (SPINK5), cystatin B (CSTB), Krüppellike factor 9 (KLF9), insulin like growth factor 1 receptor (IGF1R), and late cornified envelope 2C (LCE2C) show the relative expression changes across the decades

(Figure 2B). Interestingly, the late cornified envelope proteins did not show as significant of a pattern when comparing across 20's and 70's but exhibits a significant increase up to the 50's and the reversal from 50's to 70's. To further visualize the gene expression profiles, we immunostained for several of these proteins in representative samples from young and old face and arm sites. Immunostaining for filaggrin showed heightened levels in the upper granular/stratum corneum layers in a representative older age face site (Figure 2C) and to a lesser extent for involucrin and loricrin (Figure 2D and 2E). The basal keratin 14 marker showed a higher overall level of detection in a representative older age arm site (Figure 2F) and a modestly higher level of detection of the suprabasal marker keratin 10 (Figure 2G).

3.4 The IL-1RA/IL-1 α ratio and IL-8 remain elevated across the decades in photoexposed facial skin, the *cis/trans* urocanic acid and 53BP1 DNA damage foci are detected in photoexposed sites, and epigenetic age is higher with age in photoexposed arm sites.

In addition to proteomics analysis on LCM₋-derived epidermal sections, we tested for the presence of the senescence-associated secretory phenotype (SASP) inflammatory biomarkers IL-8 and the IL-1RA/IL-1 α ratio on the surface of skin.⁸ Analysis of tape strip extractions showed the levels of both biomarkers were elevated in photoexposed face compared to dorsal arm and buttock sites (Figure 3A and 3B). Interestingly, the levels on face remained elevated across the age groups. It was surprising that we did not detect elevated levels of these cytokines in the photoexposed dorsal arm sites. To

Page 45 of 110

better understand this difference between the two sites, we analysed for the UVsensitive metabolite ratio of *cis/trans*-urocanic acid. We showed a significant elevation in both face and arm compared to buttock site and was consistent across the decades (Figure 3C). We also stained arm and buttock sites from both young and old for 53BP1. an indicator of DNA damage response induced by UV-irradiation.^{9,10} Quantification showed significantly more foci in the basal layer of aged arm compared to young, while very few foci were detected in buttock (Figure 3D-F). The buttock sites in either young or old did not show any significant increase in DNA damage. Additionally, we quantitated epigenetic age levels, which is based on DNA methylation levels from thousands of aging related locis.¹¹ We showed that both body sites showed elevated epigenetic age levels in the 60's when compared with the 30's, and significantly accelerated aging in arm sites compared to buttock sites (Figure 3G). The elevated levels of these photosensitive markers with age in arm and face sites support that both sites undergo a certain degree of photodamage. The muted levels of IL-8 and the IL- $1RA/IL-1\alpha$ ratio may be due to unknown physiological differences that merit further investigation.

3.5 Senescence and inflammation are elevated with age in photoexposed epidermis

The detection from facial skin surface of elevated levels of IL-8 which remains consistently high (Figure 3B) suggests that this site may present a higher senescence/inflammation rate than arm. As shown previously, we report that the

senescence associated gene CDKN2A was is elevated with age across all three body sites.² To better understand the correlation there may be between senescence, the heightened presence of the SASP-associated inflammatory biomarkers, and the epidermal morphological changes, we manually curated transcriptomics data for a subset of genes encoding for senescence and inflammatory associated proteins. We found an overall pattern of increased expression across the decades between 20's and 70's in both the photoexposed arm and face sites, with more genes being upregulated in face (Figure 4A). In agreement, cyclin dependent kinase inhibitor 2A (CDKN2A), alpha-crystallin B chain (CRYAB), cytokine receptor type 2/IL8RB (CXCR2) were upregulated upon aging (Figure 4B). Similarly, several genes that have been reported to be reduced upon senescence (RBL2, SIRT, LMNB1) showed a general pattern of lowered expression (Figure 4A).¹²⁻¹⁴ CDKN2A is known to encode for several proteins involved in senescence and linkages to cancer, and aging, including p16^{INK4A, 15-17} To further visualize the expression patterns, we immunostained biopsy sections from young and old face sites for p16^{INK4a} and observed higher number of p16-positive cells in aged photoexposed facial skin throughout the basal and suprabasal layers (Figure 4C and 4D, yellow arrows).

3.6 An oxygen sensing/hypoxic fingerprint and metabolic reprograming increases with age in epidermis

The proteomics-based detection of elevated levels of several glycolytic enzymes in 60's aged epidermal arm LCM samples suggests the epidermis was undergoing a metabolic

shift. A shift to glycolysis is a hallmark process of cells when exposed to hypoxic conditions. The morphological changes with age of increased stratum corneum thickness, decrease in rete ridge path length ratio, and less vasculature detection could impact oxygen bioavailability in the epidermis. Finally, the increased expression and protein detection of hemoglobin- α further suggests an oxygen sensing response by the epidermis. Thus, we manually curated from transcriptomics data a subset of genes encoding for proteins sensitive to oxygen tension or associated with cellular responses to hypoxia. These genes showed an increased expression pattern across the decades between 20's and 70's in arm, buttock, and face sites (Figure 5A, pink coloration). Consistent with this, genes encoding for proteins known to negatively respond to hypoxia showed decreased expression across the decades, primarily in the photoexposed forearm and face sites (Figure 5A, blue coloration). Genes encoding for glycolytic enzymes were also analysed and several genes were found to have elevated expression patterns across the decades between 20's and 70's in arm and face sites (Figure 5A, red coloration). To further illustrate the statistical findings, representative expression traces are shown for hypoxia inducible factor 1, subunit alpha (HIF1A, a master regulator of cellular response to hypoxic conditions), hemoglobin- β (HBB), heme oxygenase 1 (HMOX1), cystine/glutamate antiporter (SLC7A11), aldolase A (ALDOA), lysine demethylase 3A (KDM3A), lysine demethylase 5A (KDM5A), Sprouty homolog 2 (SPRY2), lactate dehydrogenase A (LDHA), and phosphoglucomutase 1 (PGM1) (Figure 5B). To further understand HIF1A and hemoglobin gene expression, we immunostained for HIF-1 α and hemoglobin- α . A representative image shows staining of HIF-1 α in nuclei of young face sites but higher expression was detected in older aged

face sites (Figure 5C and 5D, red arrows). Representative images of hemoglobin- α staining in both arm and face sites highlight an elevated staining intensity throughout the upper granular/stratum corneum layers in arm (Figure 5E) and face (Figure 5F) from older individuals as compared to younger. Interestingly, there was no observable staining increase in the basal layer and through the dermis, further supporting that the presence of hemoglobin- α was epidermally derived and not erythroid.

4 DISCUSSION

The skin is the first line of defense protecting the body from environmental stressors such as solar radiation and pollution. Daily exposure to sunlight is one of the more significant environmental insults that induces DNA damage, oxidative stress, and inflammation in skin. Human skin must maintain robust repair capabilities to prevent cumulative damage triggered by these stressors. However, with age this ability is diminished, and the onset of senescence further hinders the skin's capacity to mitigate stress-induced inflammation and can lead to the presence of chronic low-level inflammation.¹⁸ This phenotype is a key feature of inflammaging. The evidence for the presence of inflammaging in skin has been previously reviewed and it was highlighted that while there are clear signs of an inflammaging microenvironment in skin, further work is needed to better understand it's role on skin aging.¹⁹

To better understand the role <u>of</u> inflammaging on skin aging, we utilized a systems-biology based approach to investigate biological samples collected from photoprotected and exposed female body sites spanning 6 decades of age. A previous report found that patterns of gene expression accelerated with aging in Caucasian

 females and differed in a subgroup that appeared exceptionally youthful based on image analysis of facial appearance.² The current study focused on the epidermal skin compartment and employed a systems biology-based approach to increase our understanding and identify potential intervention strategies to mitigate premature aging. Our findings provide a body of evidence that photoexposed facial skin <u>appears to be is</u> in an inflammaging microenvironment due to the presence of elevated chronic inflammation which, in turn, could be a factor <u>in part</u> that leads to an imbalance in epidermal homeostasis starting in the 30's as measured via histology, transcriptomics, and proteomics (Figure 6). This suggests that targeting inflammation in younger aged skin may be a promising intervention approach to mitigate the molecular and morphological changes that lead to a photoaged appearance of skin and impact on underlying skin health.

The histomorphologic analysis in this study found that the epidermis undergoes significant changes with age, including stratum corneum thickening, implying that there may be a stronger barrier in older aged skin. While counter-intuitive, several reported studies have shown that trans-epidermal water loss values decrease in older aged subjects, suggesting that the barrier integrity improves with age.²⁰ However, the underlying health of the skin plays a role to ensure optimal repair response kinetics to damaging agents. Older aged skin has been shown to have a slower and weaker response profile to damage such as wounding and tape strip removal.^{21, 22} We also show that with age the epidermis becomes thinner, the rete ridge path length flattens, and these changes correlate with changes in gene expression and protein levels associated with differentiation and proliferation, similar to *in vitro* data previously

published.²³ Expression changes occur in a large proportion of genes encoding for proteins associated with the epidermal complex, keratins, proteases, protease inhibitors, calcium bindings proteins/AMP, and late cornified envelope proteins. Additionally, these changes are more apparent in the photoexposed arm and face sites than the buttock site, confirming previous in vitro data where UVB irradiation led to increased levels of late differentiation markers.²⁴³. This imbalance in differentiation and proliferation processes appears to shift in the 30's and could be a factor in the observed morphological changes detected starting in the 40's. For example, the representative expression traces for FLG, LOR, ALOX12B, KRT2, CALML3, SPINK5, and CSTB all show a similar pattern of increased expression beginning in the 20's to 30's and continuing to increase across the decades. It is worth noting that some of these markers show -alterations of this trend in the 50's, presumably due in part to hormonal changes as recorded in the previous study.² This is particularly highlighted in the respective traces presented as well as the overall expression patterns for the late cornified envelope proteins which showed significant changes in expression between the 20's and 50's but lost significance when comparing between the 20's and 70's. Several of the proteins expressed by these genes were also detected via proteomics profiling between the photoexposed arm of young and old subjects. A similar proteomics profiling has been reported in which the authors used tape strip collection to guantitate the levels of surface proteins associated with differentation.²³⁴⁵ Their findings are similar to the ones presented here with the exception that several proteins showed contrasting reduced levels in photoexposed skin compared to the elevated levels of those same proteins in our study. It should be pointed out that the age comparison

 between the 20's and 60's in this work was selected due to reversal of expression levels in the older 70's cohort. Future work will include additional analyses across all the age groups. Overall, there is an apparent correlation between the differentiation associated gene expression changes that begins in the 20's and correlates with the morphological changes that become significantly measurable starting in the 40's. This suggests an imbalance in epidermal homeostasis which could impact its response profile to environmental insults and maintenance of normal cellular function.

To better understand the inflammatory and photoexposure status of the subjects in this study, we evaluated for the presence of inflammatory and photosensitive biomarkers isolated from the skin's surface. Detection of elevated levels of IL-8 has been shown to be elevated in eczema, atopic dermatitis, and psoriasis skin and in 3D skin models after UVB exposure. ²³⁶⁻²⁸ We found elevated levels of IL-8 on photoexposed facial skin surface sites that remain elevated across age groups. The ratio of IL-1RA/IL-1 α present on the skin's surface is known to be an indicator of underlying inflammation associated with skin dermatitis conditions and UV exposure.²⁸⁹⁻ ³⁰¹ Relative to impact of age and photoexposure on this inflammatory biomarker, it was reported that the IL-1RA/IL-1 α ratio was elevated in photoexposed face compared to non-exposed upper inner arm and remained constant across age groups.²⁸⁹ Relatedly, we show similar patterns when comparing between photoexposed face where the IL-RA/IL-I α ratio was consistently high and consistently low in photoprotected buttock sitess across the decades. Surprisingly, we did not see an increase in these cytokines in photoexposed dorsal arm samples since we had previously reported there are significant histological indications of photoaging.² We show that several biomarkers

associated with photoexposure are increased in arm sites, including the cis/transurocanic acid ratio, foci of the DNA damage response marker 53BP1 that is sensitive to UV exposure, and epigenetic age derived from methylation levels of DNA, an indicator of epigenetic aging.^{11,342-334} These methylation patterns are similar to what has been previously reported where the biopsies were enzymatically separated into epidermis and dermis fractions in contrast to LCM in our study.³⁴⁵ Overall, this supports that the photoexposed arms undergo photodamage. We do not believe the lower levels of IL-8 or the IL-1RA/IL-1 α ratio on photoexposed arm or buttock sites are an artefact since we performed the analysis in two independent experiments from duplicate tapes. The difference could reflect a dose response or a level of chronic exposure or, alternatively, facial skin is among the thinnest in the body and may be more susceptible to injury. While overall our results support the hypothesis that photoexposed skin is in a heightened state of inflammation, and that inflammation is present early in the 20's and remains persistent across the decades, future work is needed to understand the physiological relevance in photodamaged arms. Overall, the implications of this constant inflammatory pressure could be an indicator of skin inflammaging that leads to the changes in gene expression patterns and correlating protein levels in photoexposed skin.

We previously reported CDKN2A, a gene that encodes for proteins associated with senescence induction, to be elevated with age.² CDKN2A is known to encode for p14^{ARF}, p15^{INK4B}, and p16^{INK4A}, all of which are involved in senescence and play significant roles in cancer, and aging, including in skin.¹⁵⁻¹⁷ In the current study we wished to better understand this correlation beyond CDKN2A and performed a focused

transcriptomics profiling of select genes encoding for proteins associated with regulation or induction of senescence in skin.³⁵⁶ It has been established that photoexposure can cause keratinocytes to prematurely enter senescence and these cells can be characterized by secretion of an altered secretome called the senescence-associated secretory phenotype (SASP), and is enriched with pro-inflammatory cytokines such as IL-6, IL-8, and IL-1 β .⁸⁷

The elevated skin surface levels of IL-8 early in the 20's age cohort on photoexposed face sites supports there may be an early onset of a SASP-associated phenotype in photodamaged facial skin. We see significant elevated levels of expression of genes encoding for proteins associated with senescence in the photoexposed sites. For example, GLB1 encodes for SA-β-gal (beta-galactosidase), a well-known biomarker of senescence in numerous tissues, including skin.³⁵⁶ Several chemokine receptors were observed to increase in expression levels with age in the photoexposed arm and face sites. CXCR1 and CXCR2 encode for receptor proteins that bind with IL-8 and showed elevated expression in both arm and face.³⁶⁷ Interestingly this provides a potential correlation of inflammatory response with the elevated levels of IL-8 present on the skin's surface. A survey of candidate SASP components from a comparison between in vitro senescence models and in vivo tissue and fluid samples showed the elevated presence of CCL22, IL15, and MMP9 under senescent-impacted conditions.³⁷⁸ The mammalian target of rapamycin (mTOR) is suggested to be a master regulator of metabolite sensing that impacts senescence induction and overall cellular aging.^{389, 4039} We show in both photoexposed epidermal sites an increase in mTOR expression levels with age (Figure 4A) that becomes

Page 54 of 110

significant in the 50's compared to the 20's for face (Figure 4B). CREG (cellular repressor of E1A-stimulated genes 1) co-expression with p16^{INK4a} can further enhance senescence than either expressed alone.⁴⁰¹ Recently, CRYAB and HMOX1 have been proposed to be senolytic targets in humans cell models.⁴¹² Interestingly, it was also demonstrated that HMOX1 expression levels were increased during differentiation, which supports a similar correlation as measured in our study.⁴³²³² As reported here, we observe a significant increase in the expression patterns of these genes starting in the 30's and continuing into the 70's in photoexposed facial epidermis sites. In addition, we evaluated genes that encode for proteins that mitigate senescence, including RBL2, SIRT1, SIRT3, SIR4, and TP53.^{12,43434–45656} These show varying patterns of decreased expression in the epidermis of photoexposed sites with significance starting in the 50's and 60's. Finally, we immunostained for p16^{INK4A} and detected nuclear localized puncti in both basal and spinousal layers. Interestingly, it has been reported that p16^{INK4a} is primarily detected in epidermal melanocytes by immunohistochemistry methods.⁴⁶⁷⁶⁷ However, this may not be an exclusive scenario since it has also been reported that p16^{INK4a} can be detected in keratinocytes in both basal and suprabasal layers, findings that are similar to ours.⁴⁸⁷⁸⁷ These findings suggest that future work is needed to better define the role of this important senescence marker in the skin individual cell types.

In total, the data presented here supports that photoexposed skin is undergoing an accumulation of senescent cells with age. The chronic presence of the SASP factor IL-8 could be a causative indicator of senescence but further work is needed to establish cause and effect linked to the imbalance in differentiation-/proliferation and morphological changes.⁴⁶⁷⁹⁸ The implications of skin undergoing these changes in

 inflammation and senescence due to photoexposure also has potential implications on overall body health. A recent review suggests there is a correlation between the accumulation of senescent cells in the skin and a negative impact on overall systemic health and longevity that occurs via the hypothalamic-pituitary-adrenal axis.⁴⁵⁰⁷⁸⁹ Future work is planned to further correlate the gene expression and protein detection across individuals and body sites in this data set and from a recent clinical study.

Oxygenation of the epidermis occurs via passive diffusion from direct contact with atmospheric oxygen and from microcapillary beds intertwined underneath the basement membrane.⁴⁸⁵¹⁹ This may explain why the epidermis is considered to have a relatively low oxygen tension that has been estimated to range between 0.3-8%, and why the epidermis could be considered hypoxic in contrast to the highly vascularized dermis where oxygen levels are estimated to be >7%.^{4501,5219,50} The morphological changes that were measured in the epidermis with age suggested to us there could be a further limitation of oxygen supply due to the longer diffusion path length through the thickened stratum corneum, as well as the reduced surface area interface with microcapillary beds from reduction of rete ridge undulation pattern. It has been previously reported that aging can lead to a measured increase in hypoxic-related response profiles.⁵³²⁴ That work utilized suction fluid blisters from young and older aged upper arms for transcriptomics profiling. In our study, we utilized the sensitivity of LCM dissection to localize the epidermis in both photoprotected and photoexposed skin sites for further investigation and an overall systems-biology body of evidence. The impact of a lowered oxygen tension in the epidermis is controlled in large part by hypoxiainducible factor-1 α (HIF-1 α), a transcription factor and master regulator of cellular

Page 56 of 110

response to oxygen tension condition.⁵⁴ In addition to HIF-1A α , an expanded transcriptomics profiling of select genes encoding proteins associated with regulation or responsiveness to oxygen tension changes or hypoxia supports our hypothesis that photoaged skin is transitioning into a more hypoxic microenvironment. For example, hypoxic conditions have been shown to induce HMOX1 gene expression at $1\% O_2$ in *vitro* and 7% O₂ *in vivo* and this was mediated by HIF-1 α activity.⁵²³⁴⁵ Gene expression of the CXCL16-CXCR6 axis, CXCR4, and CXCL12 have been reported to be elevated under chronic hypoxic conditions.⁵⁶⁵⁴³ PDSS1 encodes for decaprenyl diphosphate synthase subunit 1 and was recently identified as a member of a hypoxia signature in hepatocellular carcinoma cells.⁵⁷⁶⁵⁴ We identified several genes whose expression patterns are negatively regulated under hypoxic conditions. Lysine demethylase 3A (KDM3A) has been reported to regulate PGC1 α (PPARGC1A) and is inhibited under hypoxic conditions.⁵⁵⁶⁷⁸ Silencing of SPRY2 gene expression was shown to correlate with elevated levels of HIF-1 α .⁵⁶⁷⁸⁹ Prolonged exposure to hypoxic conditions is known to shift cellular metabolism to a greater reliance on glycolysis due to the more anaerobic conditions.⁵⁶⁰⁹⁸⁷ We observed a similar shift based on elevated expression of genes encoding for enzymes involved in glycolysis such as ALDOA, ENO1, LDHA, PGM1, and PKM. This was further supported by the detection of higher protein levels for ADLOA and PKM in older aged arm samples compared to younger aged samples. Expression for the glucose transporters SLC2A1, SLC2A3, and SLC7A11 were also elevated with age, which have been reported to be stimulated in response to hypoxia.^{54<u>56,610</u>589} Interestingly, we detected elevated expression of hemoglobin- α and - β (HBA and HBB) and a numerically greater level of hemoglobin- α protein levels in

Page 57 of 110

older aged photoexposed arms. Of note, we did not see any significant staining for hemoglobin- α through the dermis and neither did we identify hemoglobin differences from proteomics of dermal sections (data not shown). While hemoglobin is well known for its role in O_2 and CO_2 gas exchange in red blood cells, an increasing number of nonerythroid tissues have been reported to endogenously express hemoglobin.⁶²¹⁰⁹ The exact function of hemoglobin in non-erythroid tissue is not clear but it has been speculated it could include regulation of heme, iron and oxygen levels.⁶³²¹⁰ It has also been proposed that hemoglobin plays a role in response to oxidative stress by helping protect against ROS damage.⁶⁴²⁴ Overall, the significant increase in expression of genes associated with hypoxia and glycolytic enzymes suggests a phenotype reflecting a hypoxic microenvironment in photoexposed skin and, to a weaker extent, in nonexposed skin. The reported range of O_2 tension in the epidermis has a broad range between 0.3-8%^{501,5219,50}, and we would propose that in this study cohort the tension was significantly lower in the older age group compared with the younger group. Further work is needed to validate these findings with quantitation of differences in oxygen content in the epidermal compartment as a function of age and photoexposure.

Limitations exist in this study since it is not clear on the causal relationship between the molecular changes ascribed and the cascade across the decades to the morphological changes.

5 CONCLUSIONS

In summary, this systems biology-based approach to analyse inflammatory and photosensitive biomarkers, proteomics, transcriptomics, and immunostaining strongly

suggests that photoexposed facial skin is undergoing inflammaging that begins as early as in the 20's and that multiple biologic pathways are affected in this process. We propose that the chronic presence of inflammation and SASP early in age may contribute to the molecular reprogramming, imbalance of epidermal homeostasis, and morphological changes. The presence of heightened senescence, oxygen sensing/hypoxic response, epigenetic drift, and metabolic shift may also play roles leading to this imbalance. While this work provides further evidence on the role of senescence and inflammation ionin impacting skin-aging in photoexposed skin, further evidence is still required.^{62345, 63456} Finally, the detection of non-erythroid-derived hemoglobin in the epidermis is a novel finding that merits further evaluation on its function and role in skin biology and aging.

ACKNOWLEDGEMENTS

We acknowledge the assistance of John C. Bierman in facilitating tape strip analysis.

CONFLICT OF INTEREST

The authors state no conflict of interest. XY, CN, WG, and YCC are full-time employees of Zymo Research Corporation. BBJ, YMD, and JEO are full-time employees of The Procter & Gamble Company.

AUTHOR CONTRIBUTIONS

BBJ, CYRT, CYH, TTL, XY, LC, SP, SB, OD, and JEO conceived the experiments; BBJ, CYRT, CYH, ALS, TTL, XY, CN, WG, YCC, YMD, LC, and PSG performed experiments and analysed the data. JEO wrote the manuscript. All authors reviewed/edited the manuscript.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

John E. Oblong https://orcid.org/0000-0001-7628-6242

REFERENCES

- Yaar M, Gilchrest BA. Photoaging: mechanism, prevention and therapy. *Br J Dermatol*. 2007; **157**:874-887.
- Kimball AB, Alora-Palli MB, Tamura M, Mullins LA, Soh C, Binder RL, Houston NA, Conley ED, Tung JY, Annunziata NE, Bascom CC, Isfort RJ, Jarrold BB, Kainkaryam R, Rocchetta HL, Swift DD, Tiesman JP, Toyama K, Xu J, Yan X, Osborne R. Age-induced and photoinduced changes in gene expression profiles in facial skin of Caucasian females across 6 decades of age. *J Am Acad Dermatol.* 2018; **78**(1):29-39.
- Holthöfer H, Virtanen I, Kariniemi AL, Hormia M, Linder E, Miettinen A. Ulex europaeus I lectin as a marker for vascular endothelium in human tissues. *Lab Invest.* 1982; 47(1): 60-66.
- Bennett MF, Robinson MK, Baron ED, Cooper KD. Skin immune systems and inflammation: protector of the skin or promoter of aging? *J Inv Derm Symp Proc.* 2008; **13:1**5-19.
- 5. Zhuang Y, Lyga J. Inflammaging in skin and other tissues the roles of complement system and macrophage. *Inflamm Allergy Drug Targets*. 2014; **13**:153-161.

 6. Kypriotou M, Huber M, Hohl D. The human epidermal differentiation complex: cornified envelope precursors, S100 proteins and the 'fused genes' family. Exp Dermatol. 2012 Sep;21(9):643-9. doi: 7. Rousselle P, Gentilhomme E, Neveux Y. (2017) Markers of Epidermal Proliferation and Differentiation. In: Humbert P, Fanian F, Maibach H, Agache P. (eds) Agache's Measuring the Skin. Springer, Cham. https://doi.org/10.1007/978-3-319-32383-1 37. 8. Fitsiou E, Pulido T, Campisi J, Alimirah F, Demaria M. Cellular senescence and the senescence-associated secretory phenotype as drivers of skin photoaging. J Invest Dermatol. 2021; 141(4S):1119-1126. 9. Shibata A, Jeggo PA. Roles for 53BP1 in the repair of radiation-induced DNA double strand breaks. DNA Repair (Amst). 2020; 93:102915. 10. Lee, J. W., Ratnakumar, K., Hung, K. F., Rokunohe, D., & Kawasumi, M. (2020). Deciphering UV-induced DNA Damage Responses to Prevent and Treat Skin Cancer. Photochemistry and photobiology, 96(3), 478–499. 11. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013; **14**(10):R115. 12. Xu C, Wang L, Fozouni P. et al. SIRT1 is downregulated by autophagy in senescence and ageing. Nat Cell Biol. 2020; 22: 1170-1179.

13. Freund A, Laberge RM, Demaria M, Campisi J. Lamin B1 loss is a senescenceassociated biomarker. *Mol Biol Cell*. 2012; **23**(11):2066-2075.

- 14. Dreesen O, Chojnowski A, Ong PF, Zhao TY, Common JE, Lunny D, Lane EB, Lee SJ, Vardy LA, Stewart CL, Colman A. Lamin B1 fluctuations have differential effects on cellular proliferation and senescence. *J Cell Biol.* 2013; **200**(5):605-617.
- 15. Ressler S, Bartkova J, Niederegger H, Bartek J, Scharffetter-Kochanek K, Jansen-Dürr P, Wlaschek M. p16^{INK4A} is a robust in vivo biomarker of cellular aging in human skin. *Aging Cell.* 2006; **5**(5):379-389.
- 16. Waaijer ME, Parish WE, Strongitharm BH, van Heemst D, Slagboom PE, de Craen AJ, Sedivy JM, Westendorp RG, Gunn DA, Maier AB. The number of p16^{INK4a} positive cells in human skin reflects biological age. *Aging Cell*. 2012;**11**(4):722-725.
- 17. LaPak KM, Burd CE. The Molecular Balancing Act of p16^{INK4a} in Cancer and Aging *Mol Cancer Res* 2014; **12**(2):167-183.
- 18. Ho CY, Dreesen O. Faces of cellular senescence in skin aging. *Mech Ageing Dev.* 2021; **198**:111525.
- 19. Pilkington SM, Bulfone-Paus S, Griffiths CEM, Watson REB. Inflammaging and the Skin. *J Invest Dermatol.* 2021; **141**(4S):1087-1095.

20. Wilhelm KP, Cua AB, Maibach HI. Skin aging. Effect on transepidermal water loss, stratum corneum hydration, skin surface pH, and casual sebum content. *Arch Dermatol.* 1991; **127**(12):1806-1809.
21. Ghadially R, Brown BE, Sequeira-Martin SM, Feingold KR, Elias PM. The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. *J Clin Invest.* 1995;

(5):2281-2290.

<u>22.</u> Gosain A, DiPietro LA. Aging and wound healing. *World J Surg.* 2004; **28**(3):321-326.

22.

 23. Tan CL, Chin T, Tan CYR, Rovito HA, Quek LS, Oblong JE, Bellanger S.
 <u>Nicotinamide Metabolism Modulates the Proliferation/Differentiation Balance and</u> <u>Senescence of Human Primary Keratinocytes. J Invest Dermatol.</u> 2019;
 139(8):1638-1647.

24. Tan CYR, Tan CL, Chin T, Morenc M, Ho CY, Rovito HA, Quek LS, Soon AL, Lim JSY, Dreesen O, Oblong JE, Bellanger S. Nicotinamide Prevents UVB- and Oxidative Stress–Induced Photoaging in Human Primary Keratinocytes. *J Invest* Dermatol. 2022; **142**(6):1670-1681.

- 23.25. Voegeli R, Monneuse JM, Schoop R, Summers B, Rawlings AV. The effect of photodamage on the female Caucasian facial stratum corneum corneome using mass spectrometry-based proteomics. Int *J Cosmet Sci.* 2017; **39**(6):637-652.
- 24.26. Sticherling M, Bornscheuer E, Schröder J-M, Christophers E. Localization of NAP-1/IL-8 immunoreactivity in normal and psoriatic skin. *J Invest Dermatol* 1991;
 96: 26-30.
- 25.27. Sticherling M, Bornscheuer E, Schröder JM, Christophers E. Immunohistochemical studies on NAP-1/IL-8 in contact eczema and atopic dermatitis. *Arch Dermatol Res* 1992; 284: 82-85.
- 26.28. Amarbayasgalan T, Takahashi H, Dekio I, Morita E. Interleukin-8 content in the stratum corneum as an indicator of the severity of inflammation in the lesions of atopic dermatitis. *Int Arch Allergy Immunol.* 2013; **160**(1):63-74.
- 27.29. Hirao T, Aoki H, Yoshida T, Sato Y, Kamoda H. Elevation of interleukin 1 receptor antagonist in the stratum corneum of sun-exposed and ultraviolet B-irradiated human skin. *J Invest Dermatol.* 1996;**106**(5):1102-1107.
- 28.30. Terui T, Hirao T, Sato Y, Uesugi T, Honda M, Iguchi M, Matsumura N, Kudoh K, Aiba S, Tagami H. An increased ratio of interleukin-1 receptor antagonist to interleukin-1alpha in inflammatory skin diseases. *Exp Dermatol.* 1998; **7**(6):327-334.

1	
2	
3	
4	
5	
6	
7	
/ Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
<u>⊿</u> ∩	
40 //1	
יד ⊿ר/	
+∠ ∕\?	
45	
44	
45	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

29.31. Perkins MA, Osterhues MA, Farage MA, Robinson MK. A non-invasive method to
assess skin irritation and compromised skin conditions using simple tape adsorption
of molecular markers of inflammation. Skin Res Technol. 2001; 7(4):227-237.
<u>30.32.</u> de Fine Olivarius F, Wulf HC, Therkildsen P, Poulsen T, Crosby J, Norval M.
Urocanic acid isomers: relation to body site, pigmentation, stratum corneum
thickness and photosensitivity. Arch Dermatol Res. 1997; 289(9):501-505.
31.33. Uehara F, Miwa S, Tome Y, Hiroshima Y, Yano S, Yamamoto M, Efimova E,
Matsumoto Y, Maehara H, Bouvet M, Kanaya F, Hoffman RM. Comparison of UVB
and UVC effects on the DNA damage-response protein 53BP1 in human pancreatic
cancer. <i>J Cell Biochem.</i> 2014; 115 (10):1724-1728.
32.34. Bártová E, Legartová S, Dundr M, Suchánková J. A role of the 53BP1 protein in
genome protection: structural and functional characteristics of 53BP1-dependent
DNA repair. <i>Aging (Albany NY</i>). 2019; 11 (8):2488-2511.
33.35. Grönniger E, Weber B, Heil O, Peters N, Stäb F, Wenck H, Korn B, Winnefeld M,
Lyko F. Aging and chronic sun exposure cause distinct epigenetic changes in human
skin. <i>PLoS Genet.</i> 2010; 6 (5):e1000971.
34.36. Wang AS, Dreesen O. Biomarkers of Cellular Senescence and Skin Aging. Front

Genet. 2018; **9**:247.

35.37. Varney ML, Johansson SL, Singh RK. Distinct expression of CXCL8 and its receptors CXCR1 and CXCR2 and their association with vessel density and aggressiveness in malignant melanoma. *Am J Clin Pathol.* 2006; **125**(2):209-216.

36.38. Schafer MJ, Zhang X, Kumar A, Atkinson EJ, Zhu Y, Jachim S, Mazula DL, Brown AK, Berning M, Aversa Z, Kotajarvi B, Bruce CJ, Greason KL, Suri RM, Tracy RP, Cummings SR, White TA, LeBrasseur NK. The senescence-associated secretome as an indicator of age and medical risk. *JCI Insight*. 2020;
5(12):e133668.

37.39. Xu S, Cai Y, Wei Y. mTOR Signaling from Cellular Senescence to Organismal Aging. *Aging Dis.* 2013; **5**(4):263-273.

38.40. Huang K, Fingar DC. Growing knowledge of the mTOR signaling network. *Semin Cell Dev Biol.* 2014; **36**:79-90.

<u>39.41.</u> Moolmuang B, Tainsky MA. CREG1 enhances p16^{INK4a}-induced cellular senescence. *Cell Cycle*. 2011; **10**(3):518-530.

40.42. Limbad C, Doi R, McGirr J, Ciotlos S, Perez K, Clayton ZS, Daya R, Seals DR, Campisi J, Melov S. Senolysis induced by 25-hydroxycholesterol targets CRYAB in multiple cell types. *iScience*. 2022; **25**(2):103848. 41.43. Numata I, Okuyama R, Memezawa A, Ito Y, Takeda K, Furuyama K, Shibahara S, Aiba S. Functional expression of heme oxygenase-1 in human differentiated epidermis and its regulation by cytokines. *J Invest Dermatol.* 2009; **129**(11):2594-2603.

42.44. Alessio N, Bohn W, Rauchberger V, Rizzolio F, Cipollaro M, Rosemann M, Irmler M, Beckers J, Giordano A, Galderisi U. Silencing of RB1 but not of RB2/P130 induces cellular senescence and impairs the differentiation potential of human mesenchymal stem cells. Cell Mol Life Sci. 2013 May;70(9):1637-51.

43.45. Kida Y, Goligorsky MS. Sirtuins, Cell Senescence, and Vascular Aging. *Can J Cardiol.* 2016; **32**(5):634-641.

 <u>46.</u>Kim RH, Kang MK, Kim T, Yang P, Bae S, Williams DW, Phung S, Shin KH, Hong C, Park NH. Regulation of p53 during senescence in normal human keratinocytes.
 Aging Cell. 2015; **14**(5):838-846.

<u>47. Victorelli S, Lagnado A, Halim J, Moore W, Talbot D, Barrett K, Chapman J, Birch J,</u>
 <u>Ogrodnik M, Meves A, Pawlikowski JS, Jurk D, Adams PD, van Heemst D, Beekman M, Slagboom PE, Gunn DA, Passos JF. Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. *EMBO J.* 2019; **38**(23):e101982.
</u>

<u>48. Pavey S, Conroy S, Russell T, Gabrielli B. Ultraviolet radiation induces p16CDKN2A</u> expression in human skin. Cancer Res. 1999 Sep 1;59(17):4185-9

- 44.49. Demaria M, Desprez PY, Campisi J, Velarde MC. Cell autonomous and non-autonomous effects of senescent cells in the skin. *J Invest Dermatol.* 2015;
 135(7):1722-1726.
- 45.50. Franco AC, Aveleira C, Cavadas C. Skin senescence: mechanisms and impact on whole-body aging. *Trends Mol Med.* 2022; **28**(2):97-109.
- 46.<u>51.</u> Stücker M, Struk A, Altmeyer P, Herde M, Baumgärtl H, Lübbers DW. The cutaneous uptake of atmospheric oxygen contributes significantly to the oxygen supply of human dermis and epidermis. *J Physiol.* 2002; **538**:985-994.
- 47.<u>52.</u> Evans SM, Schrlau AE, Chalian AA, Zhang P, Koch CJ. Oxygen levels in normal and previously irradiated human skin as assessed by EF5 binding. *J Invest Dermatol.* 2006; **126**(12):2596
- 53. Prahl S, Kueper T, Biernoth T, Wöhrmann Y, Münster A, Fürstenau M, Schmidt M, Schulze C, Wittern KP, Wenck H, Muhr GM, Blatt T. Aging skin is functionally anaerobic: importance of coenzyme Q10 for anti aging skin care. *Biofactors*. 2008; 32(1-4):245-255.

48.<u>54.</u> Rezvani HR, Ali N, Nissen LJ, Harfouche G, de Verneuil H, Taïeb A, Mazurier F. HIF-1α in epidermis: oxygen sensing, cutaneous angiogenesis, cancer, and noncancer disorders. *J Invest Dermatol.* 2011; **131**(9):1793-1805.

49.<u>55.</u> Lee PJ, Jiang BH, Chin BY, Iyer NV, Alam J, Semenza GL, Choi AM. Hypoxiainducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. *J Biol Chem.* 1997; **272**(9):5375-5381.

50.56. Korbecki J, Kojder K, Kapczuk P, Kupnicka P, Gawrońska-Szklarz B, Gutowska I, Chlubek D, Baranowska-Bosiacka I. The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors-A Review of Literature. *Int J Mol Sci.* 2021; **22**(2):843.

51.57. Zhang B, Tang B, Gao J, Li J, Kong L, Qin L. A hypoxia-related signature for clinically predicting diagnosis, prognosis and immune microenvironment of hepatocellular carcinoma patients. *J Transl Med*. 2020; **18**(1):342.

52.58. Qian X, Li X, Shi Z, Bai X, Xia Y, Zheng Y, Xu D, Chen F, You Y, Fang J, Hu Z, Zhou Q, Lu Z. KDM3A Senses Oxygen Availability to Regulate PGC-1α-Mediated Mitochondrial Biogenesis. *Mol Cell.* 2019; **76**(6):885-895.

53.59. Hicks KC, Patel TB. Sprouty2 Protein Regulates Hypoxia-inducible Factor-α (HIFα) Protein Levels and Transcription of HIFα-responsive Genes. *J Biol Chem*. 2016; **291**(32):16787-16801.

54.<u>60.</u> Czyzyk-Krzeska MF. Molecular aspects of oxygen sensing in physiological adaptation to hypoxia. *Respir Physiol*. 1997; **110**(2-3):99-111.

- 55.61. Airley RE, Mobasheri A. Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. *Chemotherapy*. 2007; **53**(4):233-256.
- <u>56.62.</u> Saha D, Patgaonkar M, Shroff A, Ayyar K, Bashir T, Reddy KV. Hemoglobin expression in nonerythroid cells: novel or ubiquitous? *Int J Inflam.* 2014; 803237.
- 57.<u>63.</u> H. Dassen R, Kamps C, Punyadeera F, Dijcks A, de Goeij A, Ederveen G, Dunselman P, Groothuis. Haemoglobin expression in human endometrium, *Human Reproduction*, 2008; **23**(3): 635–641.
- 58.64. Saha D, Koli S, Reddy KVR. Transcriptional regulation of Hb-α and Hb-β through nuclear factor E2-related factor-2 (Nrf2) activation in human vaginal cells: A novel mechanism of cellular adaptability to oxidative stress. *Am J Reprod Immunol.* 2017; 77(6).
- 59.<u>65.</u> Low E, Alimohammadiha G, Smith LA, Costello LF, Przyborski SA, von Zglinicki T, Miwa S. How good is the evidence that cellular senescence causes skin ageing? *Ageing Res Rev.* 2021; **71**:101456.
- <u>66.</u>Lee YI, Choi S, Roh WS, Lee JH, Kim TG. Cellular Senescence and Inflammaging in the Skin Microenvironment. *Int J Mol Sci.* 2021; **22**(8):3849.


```
338x190mm (150 x 150 DPI)
```


338x190mm (150 x 150 DPI)

Protein	Gene	Median fold change 60's vs 20's	<i>p</i> -value	Gene expression changes with age
Keratin 2	KRT2	1.57	<0.001	Increased
Keratin 10	KRT10	1.50	<0.001	Increased
Cystatin M	CST6	1.86	0.001	Increased
Cystatin A	CSTA	2.37	0.002	Increased
Calpain 1	CAPN1	2.33	0.009	No
Fructose-bisphosphate aldolase A	ALDOA	2.04	0.010	Increased
Arachidonate 12 lipoyxgenase 12R	ALOX12B	2.42	0.011	Increased
Bleomycin hydrolase	BLMH	1.73	0.016	Increased
Annexin A8	ANXA8	1.86	0.020	Increased
Cystatin B	CSTB	2.14	0.022	Increased
Annexin A1	ANXA1	1.41	0.026	Increased
Involucrin	IVL	1.47	0.026	Increased
Transglutaminase 1	TGM1	1.38	0.026	Increased
Annexin A2	ANXA2	1.22	0.026	Decreased
Suprabasin	SBSN	1.37	0.026	Increased
Serine protease inhibitor Kazal-type 5	SPINK5	1.43	0.028	Increased
Calmodulin-like protein	CALML3	1.71	0.030	Increased
Malate dehydrogenase 2	MDH2	0.56	0.044	Decreased
Protein S100-A14	S100A14	1.35	0.046	Increased
Pyruvate kinase M	PKM	1.23	0.049	Increased
Gelsolin	GSN	1.23	0.062	Increased
Transglutaminase 3	TGM3	1.45	0.084	Increased
Hemoglobin alpha	HBA	16.40	0.092	Increased

Table 2. Median fold change of detected proteins between 60's and 20's age groups from laser capture microdissection sections of epidermis from photoexposed dorsal forearms and changes in gene expression correlation.

Body site	Age	Replicates	Stratum corneum	Epidermal thickness	Rete ridge length ratio
	group		thickness (μm) <u>+</u> SEM	(μm) <u>+</u> SEM	<u>+</u> SEM
Face	20's	30	10.69 <u>+</u> 0.52	66.67 <u>+</u> 1.80	1.220 <u>+</u> 0.025
	30's	24	10.82 <u>+</u> 0.47	63.25 <u>+</u> 2.12	1.210 <u>+</u> 0.032
	40's	24	13.35 <u>+</u> 0.84*	64.95 <u>+</u> 2.25	1.242 <u>+</u> 0.047
	50's	26	13.31 <u>+</u> 0.63**	60.18 <u>+</u> 1.88*	1.205 <u>+</u> 0.030
	60's	22	13.45 <u>+</u> 1.04*	56.95 <u>+</u> 2.71**	1.172 <u>+</u> 0.043
	70's	26	14.44 <u>+</u> 0.71***	51.92 <u>+</u> 1.83***	1.086 <u>+</u> 0.025**
Arm	20's	29	21.98 <u>+</u> 0.90	57.45 <u>+</u> 1.76	1.182 <u>+</u> 0.029
	30's	25	24.30 <u>+</u> 1.52	56.80 <u>+</u> 1.70	1.125 <u>+</u> 0.027
	40's	24	22.94 <u>+</u> 1.14	52.84 <u>+</u> 1.48	1.119 <u>+</u> 0.027
	50's	26	25.45 <u>+</u> 1.50	55.41 <u>+</u> 2.86	1.091 <u>+</u> 0.027*
	60's	22	24.17 <u>+</u> 1.20	46.25 <u>+</u> 2.50*	1.098 <u>+</u> 0.018
	70's	23	25.74 <u>+</u> 1.94	50.87 <u>+</u> 2.31*	1.057 <u>+</u> 0.019*
Buttock	20's	27	17.83 <u>+</u> 0.69	74.13 <u>+</u> 2.99	1.449 <u>+</u> 0.042
	30's	25	19.97 <u>+</u> 0.97	67.86 <u>+</u> 1.76	1.464 <u>+</u> 0.057
	40's	24	20.46 <u>+</u> 0.78*	72.70 <u>+</u> 3.33	1.559 <u>+</u> 0.049
	50's	26	19.10 <u>+</u> 0.87	61.01 <u>+</u> 2.04***	1.446 <u>+</u> 0.049
	60's	22	21.32 <u>+</u> 1.31*	59.91 <u>+</u> 2.35***	1.398 <u>+</u> 0.049
	70's	25	21.23 <u>+</u> 0.94**	58.91 <u>+</u> 2.07***	1.300 <u>+</u> 0.036*

Table 1.	Quantification of hi	istological me	asurements	of epidermal	morphology	across ag	ge groups	and face,	arm,	and
buttock s	ites (mean + SEM)									

T-test (two tailed, type III) comparing each decade to the 20's age group. * p<0.05; ** p<0.01; *** p<0.001

Table 1. Complete list of detected peptides and corresponding protein associations

2 3	Table 1. Comple	ete list of d	etected pe	ptides and corresp	oonding pro	otein associations
4	Accession	Peptide co	Peptides u:	Confidence score	Anova (n)*	Max fold change
5	K22E HUMAN	45	45 a	4001 18	4 66E-06	1 571500921
0				123 64	5.27E-06	2 / 37636752
/		2	2	00.35	0.000105	2.407000702
8		24	24	2222 76	0.000105	2.304244239
9		34	34	3323.70	0.000116	1.490002411
10	DSC1_HUMAN	9	9	683.6	0.000851	1.4/61/5156
11	DIAPZ_HUMAN	1	1	41.59	0.000857	2.025061104
12	GGCT_HUMAN	1	1	61.73	0.001017	2.705299714
13	CYIM_HUMAN	1	1	48.79	0.001399	1.856927208
14	PSA6_HUMAN	1	1	83.04	0.00151	2.643433369
15	CYTA_HUMAN	2	2	156.08	0.001963	2.371513414
16	DSG1_HUMAN	10	10	828.71	0.002773	1.477494903
17	RAB7A_HUMAN	2	2	85.13	0.003734	1.770926128
18	ANK1_HUMAN	1	1	68.47	0.00519	7.557364298
19	CAN1_HUMAN	2	2	114.65	0.005193	2.333631983
20	NDKB_HUMAN	1	1	56.79	0.005935	1.837079094
21	NUCL_HUMAN	3	3	205.82	0.00666	1.49590298
22	IF6_HUMAN	1	1	73.04	0.007094	1.653846949
23	H2A2C_HUMAN	2	2	207.97	0.007106	1.332102285
24	LX12B_HUMAN	1	1	69.59	0.009147	2.423628406
25	MYL6_HUMAN	3	3	178.28	0.00949	1.316656974
26	CO6A5 HUMAN	1	1	70.83	0.009747	6.456860767
27	ALDOA HUMAN	1	1	54.54	0.010391	2.036634313
28	ZA2G HUMAN	1	1	48.27	0.010531	2.029936331
29	ALBU HUMAN	19	19	1349.61	0.010736	2.881081964
30	BLMH HUMAN	3	3	194.16	0.011627	1,733939166
31	ANXA8 HUMAN	1	1	42.09	0.011642	1.862656966
32	FINA HUMAN	3	3	226 85	0 012488	1 554708113
33	RS7 HUMAN	2	2	95.85	0.012869	1 300558293
34	CYTE HUMAN	1	1	80.54	0.015614	2 138091331
35		1	1	72 32	0.016	2 227086503
36	RABSE HUMAN	2	2	115 13	0.017068	1 336733826
37	FE1A1 HUMAN	2	2	226.36	0.017466	1 282870222
38		3	3	127 /	0.010021	2 240262182
39		3	3	210.20	0.019021	1 406311084
40		3	3	219.29	0.020007	2.050612602
41		4	4	200.27	0.021337	2.030012002
42		3	3	205.00	0.022392	2 000102211
42		4	4	271.12	0.02327	3.900192311
4J ΔΔ		ۍ ۱۸	ۍ ۲۸	207.73	0.025565	1.3/01033/0
45		11	11	093.31	0.025626	1.224040037
46	SBSN_HUMAN	4	4	352.9	0.026108	1.3/46//388
40	APEX1_HUMAN	1	1	67.76	0.026309	26.50211607
47 10	GSDMA_HUMAN	1 2	2	114.03	0.026519	2.955793889
40	ISK5_HUMAN	1	1	68.35	0.02808	1.421964901
49 50	CALL3_HUMAN	2	2	152.74	0.030272	1./1249180/
50	RL26_HUMAN	1	1	54.52	0.030846	1.388515772
51	ACTB_HUMAN	7	7	571.99	0.031106	1.272944065
52	RL10_HUMAN	1	1	85.89	0.040476	9.486477871
55	ST2B1_HUMAN	1	1	79.53	0.041009	1.563733606
54	MDHM_HUMAN	2	2	148.85	0.044087	1.77475996
55 56	PLST_HUMAN	4	4	227.88	0.045466	1.241971486
30 57	S10AE_HUMAN	2	2	184.54	0.045589	1.353247377
5/ 50	SPB5_HUMAN	4	4	223.27	0.04696	1.176392671
58	TSYL4_HUMAN	1	1	45.02	0.048409	2.734850233
59	KPYM_HUMAN	6	6	449.31	0.04853	1.226948687
60	APOB_HUMAN	1	1	60.54	0.04968	8.327456823
	PDIA3_HUMAN	1	1	96.97	0.053799	1.510159821

1						
1 2	RS19 HUMAN	2	2	101.11	0.054433	1.596593804
2	A1AT HUMAN	1	1	53.89	0.056654	2.413548177
5 4	MDHC HUMAN	1	1	49.96	0.057092	1.317575635
4	DYL1 HUMAN	1	1	62.55	0.059068	29.69482053
5	RI 13 HUMAN	2	2	92 42	0.059104	2 807482586
6	PSD12 HUMAN	1	- 1	56 77	0.060677	2 618455047
/	CATA HUMAN	3	3	2/3 12	0.060771	1 338620/82
8		3	J 2	240.12	0.000771	1.00020402
9	GELS_HUMAN	2	2	141.20	0.001043	1.22300239
10	IF2B1_HUMAN	1	1	40.76	0.062498	1.4/1/3/51
11	ASC_HUMAN	2	2	120.91	0.067938	1.50/5/58/3
12	BAF_HUMAN	1	1	61.43	0.068195	3.34046231
13	IL37_HUMAN	1	1	64.04	0.072633	1.54265532
14	HUTH_HUMAN	3	3	215.14	0.078286	1.788710235
15	SPA12_HUMAN	2	2	92.42	0.078347	2.570924584
16	EF1B_HUMAN	4	4	329.44	0.078604	1.206072326
17	TRI29 HUMAN	2	2	143.75	0.080577	1.314804431
18	IMPA2 HUMAN	1	1	43.08	0.081315	1.798828494
10	BAIP2 HUMAN	1	1	56.71	0.081585	1.353464905
20	CO4A HUMAN	1	1	71.9	0.083158	111 5807498
20	TGM3 HUMAN	3	3	191 55	0.084276	1 45153138
21	RS5 HUMAN	1	1	46.63	0.004270	1 / 8510207
22		1		47.04	0.000+10	0 525042670
23		1		47.04	0.069393	0.020942079
24		1		49.78	0.090108	2.393392434
25	PP1G_HUMAN	1	1	44	0.090412	2.02663082
26	HBA_HUMAN	7	7	487.1	0.091746	16.39571503
27	TKT_HUMAN	2	2	94.8	0.093311	1.439436051
28	ANT3_HUMAN	1	1	97.49	0.095281	2.487589244
29	TCPB_HUMAN	1	1	104.4	0.100647	1.230026799
30	PHB2_HUMAN	2	2	116.76	0.101996	1.296436532
31	ALDOC_HUMAN	1	1	66.26	0.103326	4.686196427
32	VINC HUMAN	1	1	94.35	0.106482	1.673825495
33	CPNS2 HUMAN	2	2	124.46	0.1128	1.327251292
34	CO6A1 HUMAN	4	4	334.91	0.114611	1.292702386
35	FILA HUMAN	8	8	484 68	0 116327	1 306635059
36	PLAK HUMAN	15	15	973 19	0 117649	1 263084589
37		3	3	175 94	0 110418	1 280438741
38	AHNK HUMAN	46	46	3033 22	0.120581	1 207350603
30			-10	5055.22	0.120301	1.207.550095
10	DO2A ULIMAN	1	1	117	0.122700	1.200309001
40		1	1	FO 42	0.127245	1.743709437
41		1	1	59.43	0.131229	1.423837827
42	SYG_HUMAN	1	1	46.04	0.132212	1.372196025
43	HBB_HUMAN	11	11	908.57	0.133894	10.62628821
44	RL18_HUMAN	2	2	161.76	0.135305	1.28518038
45	ARGI1_HUMAN	5	5	321.8	0.137072	1.22104138
46	IDE_HUMAN	2	2	113.67	0.138276	2.315818325
47	PKHA7_HUMAN	1	1	42.46	0.141425	1.639571281
48	RS20_HUMAN	1	1	53.86	0.141427	1.479954322
49	RSSA_HUMAN	3	3	232.07	0.141797	1.274400579
50	PTMA HUMAN	1	1	52.42	0.145106	1.754683786
51	DESP HUMAN	60	60	4229.04	0.14557	1.187991464
52	TPM3 HUMAN	2	2	114.86	0.148137	1.151896057
53	TCP7 HUMAN	1	1	52 26	0 149621	1 329175145
54	ENOA HUMAN	1	1	77.96	0 150274	1 347717422
55		י י	Ч	1/1/ /2	0 1536/5	1 313005/65
56		1	1	70 05	0.157612	1 / 15/5706/
57		1	1	12.20	0.157013	1.410401804 2 A27260725
58		 ∡	ا د	92.5	0.100002	3.03/300/33
59	GSTPT_HUMAN	1	1	50.08	0.159429	3.050493728
60	KLAU_HUMAN	2	2	167.84	0.160261	1.30606878
00	CAH2_HUMAN	3	3	196.35	0.16/382	2.700501416
	CX7A2_HUMAN	1	1	67.22	0.170297	1.280140886

1						
2	GLRX1_HUMAN	1	1	49.22	0.172069	Infinity
3	COX2_HUMAN	1	1	42.72	0.172728	1.70002341
4	NB5R1_HUMAN	2	2	117.25	0.173395	1.245625167
5	HXK1_HUMAN	1	1	119.68	0.175121	1.984113652
6	VDAC2_HUMAN	2	2	115.64	0.1/6411	1.241923667
7	RBP56_HUMAN	1	1	54.03	0.179495	1.584702417
8	SSBP_HUMAN	1	1	85.52	0.18578	1.274073483
9	H14_HUMAN	3	3	158.63	0.185891	1.125933233
10	HV305_HUMAN	1	1	93.25	0.187104	2.959087701
11	CAP1_HUMAN	2	2	168.1	0.189348	1.203550892
12	KCRU_HUMAN	1	1	55.55	0.18935	1.218138689
13	HNRPK_HUMAN	4	4	284.25	0.190296	1.260475702
14	AN32E_HUMAN	1	1	84.11	0.191228	1.885062464
15	CLUS_HUMAN	2	2	149.5	0.19559	2.26811272
16	PCBP1_HUMAN	3	3	171.55	0.196839	1.191299659
17	PSA7L_HUMAN	1	1	90.64	0.197493	1.814301795
18	1A23_HUMAN	2	2	123.23	0.197934	1.553453265
19	EF1G_HUMAN	1	1	43.14	0.198539	1.257612848
20	AN32A_HUMAN	1	1	46.9	0.201663	1.285134372
21	EZRI_HUMAN	2	2	112.29	0.206472	1.278334002
22	CAZA1_HUMAN	2	2	143.25	0.206942	1.16956259
23	PNISR_HUMAN	1	1	47.69	0.20695	1.392523423
24	SPB12_HUMAN	3	3	157.06	0.209682	1.18659943
25	RL27_HUMAN	2	2	83.37	0.214295	1.229872401
26	S10A9_HUMAN	1	1	82.75	0.219733	1.142990893
27	C1QBP_HUMAN	2	2	128.21	0.22273	1.282135352
28	RAN_HUMAN	2	2	128.98	0.223752	1.108475545
29	SEPT7 HUMAN	1	1	42.93	0.228494	1.410874595
30	RS12 HUMAN	1	1	53.4	0.230111	11.31375841
31	DYHC1 HUMAN	3	3	155.16	0.230795	1.283415739
32	K2C80 HUMAN	2	2	128.72	0.233455	1.367455441
33	LYPA1 HUMAN	1	1	65.84	0.235087	1.352953317
34	PRDX6 HUMAN	4	4	189.37	0.23619	1.217651228
35	RL17 HUMAN	1	1	45.3	0.237747	1.359966302
36	RL18A HUMAN	1	1	71.73	0.238336	1.133522236
37	PDIA6 HUMAN	1	1	82.53	0.240904	1.133374764
38	PEPL HUMAN	3	3	240.36	0.241276	1.120846368
39	HSP71 HUMAN	10	10	815.01	0.246724	1.084090567
40	GRP75 HUMAN	1	1	43.68	0.24908	1.150417665
41	POF1B HUMAN	4	4	249.08	0.250155	1.191514045
42	CAH1 HUMAN	3	3	227.38	0.253856	5.905970035
43	TALDO HUMAN	2	2	140.12	0.254077	1.137801926
44	PP2BA HUMAN	1	1	42.11	0.257644	1.210087083
45	PROF1 HUMAN	2	2	114	0.25895	1.184669154
46	TBB5 HUMAN	6	6	510.74	0.259615	1.182941254
47	IF4A1 HUMAN	1	1	55.67	0.259735	1.355402896
48	F213A HUMAN	2	2	107.08	0.260541	1.559088822
49	ALDH2 HUMAN	2	2	182.26	0.263561	1.130541128
50	AT1A1 HUMAN	1	1	50.07	0.266911	1.221288848
51	BLVRB HUMAN	1	1	106.22	0.2678	3.529759843
52	S10AG HUMAN	1	1	79.29	0.272856	1.329595873
53	SRP09 HUMAN	1	1	58.34	0.273009	1.542996598
54	CALR HUMAN	1	1	47.74	0.273772	1.659284637
55	DSC3 HUMAN	6	6	421.61	0.274857	1.216322102
56	ODO1 HUMAN	1	1	43.51	0.275783	1.252335891
57	PKP1 HUMAN	14	14	1188.18	0.2774	1.159124089
58	COHA1 HUMAN	1	1	47.78	0.278124	1.308317457
59	THIO HUMAN	1	1	41.77	0.279389	1.18135862
60	CNBP1 HUMAN	1	1	79.54	0.283892	1.548883216
	CH60_HUMAN	2	2	117.63	0.285422	1.234044948

1						
2	FIBB_HUMAN	2	2	107.02	0.28554	2.013345521
3	A1AG1_HUMAN	2	2	133.7	0.291477	1.789481581
1	RL4 HUMAN	2	2	113.75	0.297363	1.12467198
4 C	CO6A2 HUMAN	5	5	292.98	0.300391	1.14803213
5	GPNMB HUMAN	1	1	42 65	0.30091	1 215935259
6		. 1	1	64.42	0.30105	2 77338107
7		1	1	04.42	0.30105	2.77330197
8				40.34	0.30192	1.270007042
9	PSB2_HUMAN	1	1	46.09	0.302456	1.143489112
10	CFAB_HUMAN	1	1	43.28	0.303291	4.649336613
11	AATM_HUMAN	1	1	66.12	0.303958	1.277161347
12	EF2_HUMAN	6	6	386.8	0.308532	1.141075852
13	DX39B HUMAN	1	1	71.24	0.308946	1.134921299
17	APRV1 HUMAN	1	1	54 73	0 309467	1 147571007
14	HMGB1 HUMAN	2	2	103 41	0.320708	1 241403699
15		1	- 1	78.85	0.324207	1 13080538
16		1	1	10.00	0.324207	1 515010011
17				40.28	0.324997	1.515213311
18	RPN2_HUMAN	1	1	46.86	0.326828	1.215093832
19	DMKN_HUMAN	1	1	54.86	0.328008	1.18266632
20	PSA4_HUMAN	1	1	67.69	0.330272	1.180063508
21	UBP5_HUMAN	1	1	55.83	0.33114	1.050168375
22	RL22 HUMAN	1	1	62.17	0.332309	1.168757175
23	GDIB HUMAN	3	3	209 87	0 333042	1 091784377
23	SRSE7 HUMAN	1	1	52.64	0 338408	1 210015854
24		1	1	47.50	0.330327	1.210010004
25		1	1	47.09	0.339327	1.403097920
26	RL19_HUMAN	1	1	62.11	0.340316	1.048885618
27	TPPP3_HUMAN	2	2	117.32	0.34114	1.313926265
28	PNPH_HUMAN	1	1	47.57	0.341178	3.442615329
29	CO3_HUMAN	5	5	393	0.344808	2.548846218
30	FRIL HUMAN	1	1	56.3	0.35065	1.204754965
31	SPTN2 HUMAN	4	4	278.63	0.357526	1.171423451
32	PPIA HUMAN	4	4	236.08	0.364011	1.076113437
33		2	2	176 94	0 364704	1 180961381
34		5	5	363 51	0.367017	1.100001001
54 25	Diaraa DT Cal N	16	16	1049 55	0.307017	1.000300420
30		10	10	1240.00	0.37197	1.039730004
36	RS15A_HUMAN	1	1	53.1	0.372938	1.430406717
37	RL12_HUMAN	2	2	121.63	0.373246	1.643661228
38	XP32_HUMAN	1	1	47.3	0.374105	1.162749892
39	TBA1C_HUMAN	7	7	549.63	0.376602	1.093420351
40	FILA2 HUMAN	5	5	324.06	0.379565	1.248328678
41	RS13 HUMAN	1	1	54.76	0.379601	1.198477635
42	HNRPD HUMAN	4	4	216 29	0.380268	1 070724192
43	RHG01 HUMAN	- 1	1	/3.05	0.386846	1 160680887
13		1	1	257.66	0.308440	1.100003007
45		4	4	207.00	0.390449	1.002209099
43	RL/_HUIVIAN	2	2	130.39	0.399273	1.09/255451
46	XRCC5_HUMAN	2	2	141.2	0.402253	1.221/954/2
4/	ATPO_HUMAN	1	1	50.5	0.403134	8.016406261
48	RL3_HUMAN	1	1	58.03	0.408996	1.750260831
49	CO3A1 HUMAN	2	2	90.73	0.413647	1.189350871
50	HNRPC HUMAN	3	3	179.03	0.413993	1.084442602
51	I DHA HUMAN	5	5	396 79	0 418869	1 110463722
52		2	2	116.48	0 / 10353	1 073305657
53		<u>ک</u>	<u>ح</u>	02.52	0.419000	1.073303037
50				03.33	0.422037	1.024300462
54		1	1	49.28	0.425327	1.02/0031/9
3 5	LEG3_HUMAN	2	2	91.15	0.427292	1.451284409
50	CLH1_HUMAN	3	3	219.52	0.437441	1.079944913
57	ARPC4_HUMAN	1	1	49.86	0.439659	1.06737206
58	RS10 HUMAN	1	1	59.3	0.440776	1.010534196
59	PSB1_HUMAN	1	1	72.27	0.441774	1.093018298
60	IE5A2 HUMAN	1	1	59 89	0 447027	1 145088474
		1	1	00.03	0 440074	1 26//02759
		I	I	90.24	0.449074	1.204490730

1	SERA HUMAN	7	7	480.38	0.454902	1,186328801
2	CO6A3 HUMAN	20	20	1407.8	0.459252	1.380081667
3 ₄	DHE3 HUMAN	1	1	86.21	0.461354	1.151317171
4	HNRPQ HUMAN	3	3	164.89	0.464631	1.047445948
5	RS18 HUMAN	1	1	58.62	0.465606	1.524293647
0	SDC1 HUMAN	1	1	89.45	0.468391	1.757744217
/	TCPE HUMAN	2	2	139 74	0 469712	1 094329214
8	HNRH1 HUMAN	2	2	138.9	0 473903	1 080925322
9	PGS2 HUMAN	2	2	127 77	0 47447	1.000020022
10	RS4X HUMAN	1	1	62 56	0 474477	1.02/07/0000
11	PRDX5 HUMAN	3	3	204.86	0.476147	1 121437617
12		5	5	336.44	0.476629	1 107210242
13	CAP7R HUMAN	2	2	100.44	0.470546	1 3/3/2/205
14	RS24 HUMAN	1	1	42 04	0.470040	1 472477151
15	TREE HUMAN	3	3	202.04	0.404437	1 1/3002/05
16	TEDA HUMAN	5	5	202.30	0.491079	1.145302435
1/		03	3	287 13	0.495779	1.057358047
18		J 1	1	207.15	0.490704	6 728/233/8
19		1	1	04.0	0.497220	1 402622446
20		1		94.31	0.50075	1.402033440
21		2	2	109.23	0.51154	2.47 1000400
22		2	2	134.31	0.513001	1.10227 1439
23	PGS1_HUMAN	2	2	118.71	0.518124	1.200125679
24	H90B4_HUMAN	1	1	64.76	0.520173	1.122411979
25	PGAM1_HUMAN	2	2	140.45	0.525252	1.059613733
26	RHG29_HUMAN	1	1	49.4	0.527849	1.5381/1116
27	LEIM1_HUMAN	1	1	54.65	0.527996	1.096218764
28	PGRC2_HUMAN	1	1	69.9	0.52947	2.632692241
29	CPSF5_HUMAN	1	1	56.38	0.531843	1.274259694
30	POSIN_HUMAN	((673.76	0.533097	1.206153997
31	FAS_HUMAN	1	1	80.36	0.534278	1.498542794
32	SFPQ_HUMAN	1	1	48.58	0.536181	1.133196076
33	RL7A_HUMAN	3	3	235.27	0.536491	1.343350728
34	RL11_HUMAN	2	2	120.59	0.538751	1.13751557
35	CLIC1_HUMAN	1	1	58.17	0.539369	1.221312612
36	RTN4_HUMAN	1	1	75.05	0.539583	1.087122959
37	KTDAP_HUMAN	1	1	79.69	0.541777	1.040397539
38	TM109_HUMAN	1	1	76.11	0.557161	1.053886636
39	RS27A_HUMAN	3	3	172.5	0.557832	1.188312351
40	CD44_HUMAN	1	1	42.8	0.574031	1.672480604
41	RLA1_HUMAN	1	1	77.37	0.58129	1.110007836
42	ANXA5_HUMAN	4	4	258.1	0.582668	1.05682398
43	ARK72_HUMAN	1	1	71.83	0.586222	1.182684332
44	A2MG_HUMAN	3	3	188	0.587835	1.492801011
45	TAGL3_HUMAN	1	1	101.5	0.588951	1.059617778
46	LDHB_HUMAN	2	2	144.45	0.589375	1.385575197
47	PRS6A_HUMAN	1	1	43.31	0.59262	2.609997906
48	S10AB_HUMAN	1	1	55.54	0.594816	1.382428536
49	MIME_HUMAN	1	1	72.97	0.601039	1.056284351
50	SPTN1_HUMAN	4	4	234.08	0.601518	1.083910053
51	RS2_HUMAN	2	2	138.22	0.605639	1.154367492
52	AT1B3_HUMAN	1	1	60.36	0.612114	1.447123375
53	FUMH_HUMAN	1	1	73.64	0.612964	1.673588197
54	IGKC_HUMAN	2	2	173.64	0.614378	1.170745303
55	ATPA_HUMAN	4	4	260.13	0.615379	1.084847169
56	PDIA1_HUMAN	3	3	172.04	0.625902	1.072666272
57	H4_HUMAN	5	5	382.17	0.632117	1.153459991
58	1433Z HUMAN	7	7	613.91	0.639398	1.018407224
59	ACTN4 HUMAN	12	12	833.51	0.640636	1.051573425
60	PKP3_HUMAN	7	7	400.34	0.643648	1.026607377
	GBG12_HUMAN	1	1	67.28	0.651131	1.042494667

1						
ו ר	TADBP HUMAN	1	1	73.94	0.654911	1.159240843
2	ANXA4 HUMAN	1	1	100.02	0.656241	2.132093172
3	AHNK2 HUMAN	4	4	209 74	0.663021	1 896074703
4 5	SPB8 HUMAN	1	1	77 69	0.664015	1 862114174
5	CASPE HUMAN	5	5	312 12	0.667619	1.066672327
6		1	1	/0.83	0.660207	1 13/217083
7		1	1	49.03	0.009207	1.134217003
8		1	1	19.01 257.27	0.070703	1.040147200
9		3	3	207.27	0.074279	1.313210700
10		1	1	54.18	0.082878	1.402070207
11	LAD1_HUMAN	1	1	8.60	0.686342	1.11/114693
12	MYH9_HUMAN	16	16	1204.46	0.688162	1.060566385
13	ADT2_HUMAN	3	3	166.88	0.692299	1.269739958
14	RS8_HUMAN	2	2	167.64	0.694811	1.698543162
15	ITB4_HUMAN	1	1	79.05	0.713515	1.075686639
16	VDAC1_HUMAN	2	2	120.43	0.713883	2.457938516
17	ICAL_HUMAN	1	1	48.76	0.719556	1.405147237
18	RL6 HUMAN	1	1	72.18	0.734843	1.675819153
19	RS3 HUMAN	4	4	252.88	0.738209	1.216720897
20	ST134 HUMAN	1	1	42.32	0.747419	1,279377606
20	RI 31 HUMAN	1	1	45.59	0 748818	1 009865951
21	LOXE3 HUMAN	1	1	89.03	0 754121	1 231475939
22		3	3	181 5	0.764457	1.0588/7128
23		3	3	550.66	0.704457	1 120600056
24		7	1	550.00	0.70042	1.139000000
25		5	5	401.78	0.776975	1.1/5546/53
26	CO1A1_HUMAN	10	10	828.67	0.7782	1.030813383
27	RL2/A_HUMAN	2	2	108.64	0.778562	1.235029567
28	ERP29_HUMAN	1	1	43.59	0.781658	1.049598443
29	CALX_HUMAN	1	1	87.01	0.784239	1.010863185
30	TCP4_HUMAN	1	1	54.41	0.78781	1.07951747
31	ASAH1_HUMAN	1	1	44.42	0.791565	1.089146324
32	PGK1_HUMAN	3	3	216.76	0.795045	1.018283254
33	RINI_HUMAN	1	1	91.97	0.800057	1.361518647
34	CIRBP_HUMAN	2	2	138.62	0.805368	1.068332391
35	TPIS_HUMAN	1	1	84.39	0.806705	1.100539224
36	MGST3 HUMAN	1	1	101.42	0.807959	1.046743904
37	LEG7 HUMAN	4	4	379.07	0.812017	1.027119523
38	LMNA HUMAN	10	10	833.04	0.818901	1.30739509
39	KPRP HUMAN	2	2	92.36	0 821107	1 065735304
40	CTND1 HUMAN	1	- 1	63 71	0.82541	1 6591742
41	RIG HUMAN	2	2	104 48	0.826601	1 018057815
42	CATM HUMAN	1	- 1	50.72	0.828102	1 23337088
42		1	1	57.80	0.020192	1 025721092
т.) ЛЛ		1	1	20.09	0.030195	1.000770402
44		4	4	292.0	0.030951	1.999776403
45	RLZ3A_HUMAN	1	1	94.32	0.831145	1.00/044229
40	GTR1_HUMAN	2	2	121.93	0.832782	1.004225524
47	THIL_HUMAN	1	1	92.76	0.8381	2.413084837
48	HSP74_HUMAN	1	1	50.01	0.838302	1.64396316
49	ARPC3_HUMAN	1	1	65.88	0.85073	1.055755578
50	RL30_HUMAN	1	1	53.29	0.86025	1.001537136
51	TCPQ_HUMAN	1	1	95.14	0.862432	1.642452431
52	A2ML1_HUMAN	1	1	52.46	0.865454	2.310167436
53	H15_HUMAN	1	1	56.07	0.869234	1.041500991
54	CO7A1_HUMAN	7	7	558.03	0.873386	1.0791599
55	KCRB HUMAN	2	2	130.57	0.874225	1.196037893
56	IGHG1 HUMAN	1	1	52.23	0.879617	1.043311236
57	RP1BL HUMAN	1	1	77.35	0.891714	1.232075708
58	PEKAL HUMAN	1	1	100 43	0 892456	1 417079162
59		1	1	100.40 40 60	0 804200	1 049405827
60	RS6 HUMAN	2	2	40.00 88 78	0 800267	1 101060717
		ے 1	ے 1	76 02	0.0000207	1 070601/17
		I	1	10.93	0.00000	1.213021421

1						
2	RS25_HUMAN	2	2	134.63	0.913145	1.008719707
2	RS9_HUMAN	4	4	184.06	0.927807	1.011259691
4	TEBP_HUMAN	1	1	50.91	0.934986	1.738373391
5	HNRPM_HUMAN	1	1	54.74	0.943217	1.054421384
6	HSPB1_HUMAN	3	3	192.06	0.96149	1.17516122
7	TACD2_HUMAN	1	1	101	0.9632	1.197915549
, 8	TAGL2_HUMAN	3	3	272.59	0.965337	1.067319142
9	RLA2_HUMAN	3	3	244.46	0.966359	1.030936816
10	OLA1_HUMAN	1	1	66.7	0.974289	1.496231185
11	ROA2_HUMAN	3	3	225.2	0.982472	1.412894986
12	PRELP_HUMAN	1	1	62.68	0.987995	1.122688091

For Review Only

Hi	ghest mean condition	Lowest mean condition	Description
	Age 60	Age 20	Keratin, type II cytoskeletal 2 epidermal OS=Homo sapi
	Age 60	Age 20	Corneodesmosin OS=Homo sapiens GN=CDSN PE=1
	Age 60	Age 20	F-box only protein 50 OS=Homo sapiens GN=NCCRP1
	Age 60	Age 20	Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=k
	Age 60	Age 20	Desmocollin-1 OS=Homo sapiens GN=DSC1 PE=1 SV
	Age 60	Age 20	Protein diaphanous homolog 2 OS=Homo sapiens GN=
	Age 60	Age 20	Gamma-glutamylcyclotransferase OS=Homo sapiens G
	Age 60	Age 20	Cvstatin-M OS=Homo sapiens GN=CST6 PF=1 SV=1
	Age 60	Age 20	Proteasome subunit alpha type-6 OS=Homo sapiens G
	Age 60	Age 20	Cvstatin-A OS=Homo saniens GN=CSTA PF=1 SV=1
	Age 60	Age 20	Desmoglein-1 OS=Homo sapiens GN=DSG1 PE=1 SV:
	Age 60	Age 20	Ras-related protein Rab-7a OS=Homo sapiens GN=RA
	Age 60	Age 20	Ankvrin-1 OS=Homo saniens GN=ANK1 PE=1 SV=3
	Age 60	Δge 20	Calpain-1 catalytic subunit OS=Homo saniens GN=CAF
			Nucleoside dinhosphate kinase B OS=Homo saniens G
		Age 20	Nucleolin OS=Homo saniens GN=NCL PE=1 SV=3
			Eukaryotic translation initiation factor 6 OS-Homo sanic
			Histone H2A type 2 C OS-Homo saniens GN-HIST2H
			Arashidanata 12 linovyganasa, 12P type OS-Home sa
		Age 20	Myosin light polypoptide 6 OS=Homo oppions CN=MVI
	Age 60	Age 20	Collagon alpha 5(1/1) chain OS-Homo capions GN-MTC
	Age 60	Age 20	Collagen alpha-5(VI) chain OS-Homo sapiens GN-CO
	Age 60	Age 20	Zina alpha 2 alveanratein OS-Hema appiana CN=AZC
	Age 60	Age 20	Zinc-alpha-z-giycoprotein OS=Homo sapiens GN=AZG
	Age 60	Age 20	Serum albumin US=Homo sapiens GN=ALB PE=1 SV=
	Age 60	Age 20	Bleomycin nydrolase OS=Homo sapiens GN=BLIVIH PE
	Age 60	Age 20	Annexin A8 US=Homo sapiens GN=ANXA8 PE=1 SV=
	Age 60	Age 20	Filamin-A US=Homo sapiens GN=FLNA PE=1 SV=4
	Age 20	Age 60	40S ribosomal protein S7 OS=Homo sapiens GN=RPS
	Age 60	Age 20	Cystatin-B OS=Homo sapiens GN=CSTB PE=1 SV=2
	Age 20	Age 60	NADH dehydrogenase [ubiquinone] 1 alpha subcomple
	Age 60	Age 20	Ras-related protein Rab-8B OS=Homo sapiens GN=RA
	Age 60	Age 20	Elongation factor 1-alpha 1 OS=Homo sapiens GN=EE
	Age 20	Age 60	Puromycin-sensitive aminopeptidase OS=Homo sapien
	Age 60	Age 20	Annexin A1 OS=Homo sapiens GN=ANXA1 PE=1 SV=
	Age 60	Age 20	Peroxiredoxin-2 OS=Homo sapiens GN=PRDX2 PE=1
	Age 60	Age 20	Involucrin OS=Homo sapiens GN=IVL PE=1 SV=2
	Age 60	Age 20	Apolipoprotein A-I OS=Homo sapiens GN=APOA1 PE=
	Age 60	Age 20	Protein-glutamine gamma-glutamyltransferase K OS=H
	Age 60	Age 20	Annexin A2 OS=Homo sapiens GN=ANXA2 PE=1 SV=
	Age 60	Age 20	Suprabasin OS=Homo sapiens GN=SBSN PE=2 SV=2
	Age 20	Age 60	DNA-(apurinic or apyrimidinic site) lyase OS=Homo sar
	Age 60	Age 20	Gasdermin-A OS=Homo sapiens GN=GSDMA PE=1 S'
	Age 60	Age 20	Serine protease inhibitor Kazal-type 5 OS=Homo sapier
	Age 60	Age 20	Calmodulin-like protein 3 OS=Homo sapiens GN=CALN
	Age 20	Age 60	60S ribosomal protein L26 OS=Homo sapiens GN=RPL
	Age 60	Age 20	Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=
	Age 60	Age 20	60S ribosomal protein L10 OS=Homo sapiens GN=RPL
	Age 60	Age 20	Sulfotransferase family cytosolic 2B member 1 OS=Hor
	Age 20	Age 60	Malate dehydrogenase, mitochondrial OS=Homo sapier
	Age 60	Age 20	Plastin-3 OS=Homo sapiens GN=PLS3 PE=1 SV=4
	Age 60	Age 20	Protein S100-A14 OS=Homo sapiens GN=S100A14 PE
	Age 60	Age 20	Serpin B5 OS=Homo sapiens GN=SERPINB5 PE=1 S\
	Age 60	Age 20	Testis-specific Y-encoded-like protein 4 OS=Homo sapi
	Age 60	Age 20	Pyruvate kinase PKM OS=Homo sapiens GN=PKM PE
	Age 60	Age 20	Apolipoprotein B-100 OS=Homo sapiens GN=APOB PE
	Age 60	Age 20	Protein disulfide-isomerase A3 OS=Homo sapiens GN=
	-		• • •

1			
2	Age 60	Age 20	40S ribosomal protein S19 OS=Homo sapiens GN=RPS
2	Age 60	Age 20	Alpha-1-antitrypsin OS=Homo sapiens GN=SERPINA1
4	Age 60	Age 20	Malate dehydrogenase, cytoplasmic OS=Homo sapiens
5	Age 60	Age 20	Dynein light chain 1, cytoplasmic OS=Homo sapiens GI
6	Age 60	Age 20	60S ribosomal protein L13 OS=Homo sapiens GN=RPL
7	Age 60	Age 20	26S proteasome non-ATPase regulatory subunit 12 OS
8	Age 60	Age 20	Catalase OS=Homo sapiens GN=CAT PE=1 SV=3
0	Age 60	Age 20	Gelsolin OS=Homo sapiens GN=GSN PE=1 SV=1
9 10	Age 20	Age 60	Insulin-like growth factor 2 mRNA-binding protein 1 OS:
10	Age 20	Age 60	Apoptosis-associated speck-like protein containing a C/
11	Age 20	Age 60	Barrier-to-autointegration factor OS=Homo sapiens GN
12	Age 20	Age 60	Interleukin-37 OS=Homo sapiens GN=II 37 PF=1 SV=1
13	Age 60	Age 20	Histidine ammonia-lyase OS=Homo sapiens GN=HAL
14	Age 60	Age 20	Serpin A12 OS=Homo sapiens GN=SERPINA12 PE=1
15	Age 60	Age 20	Elongation factor 1-beta QS=Homo saniens GN=EEE1
10	Age 60	Δge 20	Tripartite motif-containing protein 29 OS=Homo saniens
1/			Inositol monophosphatase 2 OS=Homo sapiens GN=IN
18	Age 20		Brain-specific angiogenesis inhibitor 1-associated prote
19	Age 60		Complement C_{1} A OS-Homo saniens C_{1} Complement C_{1} A OS-Homo saniens C_{1}
20		Age 20	Protoin glutamino gamma glutamultransforaça E OS-H
21	Age 20	Age 20	40S ribosomal protoin S5 OS-Homo sanions CN-DDS
22	Age 20	Age 60	Prohibitin OS-Home continue CN-DHD DE-1 SV-1
23	Age 20	Age 60	Fionibilin OS-Homo sapiens GN-PHB PE-1 SV-1
24	Age 60	Age 20	Fally actu-binding protein, epidermal OS=nonio sapien:
25	Age 60	Age 20	Senne/Inteonine-protein prosphatase PPT-gamma Cate
26	Age 60	Age 20	Hemoglobin subunit alpha OS=Homo sapiens GN=HBA
2/		Age 20	Transketolase OS=Homo sapiens GN=TKT PE=T SV=:
28	Age 60	Age 20	Antithrombin-III US=Homo sapiens GN=SERPINC1 PE
29	Age 20	Age 60	I-complex protein 1 subunit beta US=Homo saplens GI
30	Age 60	Age 20	Pronibitin-2 US=Homo sapiens GN=PHB2 PE=1 SV=2
31	Age 60	Age 20	Fructose-bisphosphate aldolase C OS=Homo sapiens (
32	Age 60	Age 20	Vinculin OS=Homo sapiens GN=VCL PE=1 SV=4
33	Age 60	Age 20	Calpain small subunit 2 OS=Homo sapiens GN=CAPN
34	Age 60	Age 20	Collagen alpha-1(VI) chain OS=Homo sapiens GN=CO
35	Age 60	Age 20	Filaggrin OS=Homo sapiens GN=FLG PE=1 SV=3
36	Age 60	Age 20	Junction plakoglobin OS=Homo sapiens GN=JUP PE=
37	Age 20	Age 60	Fatty aldehyde dehydrogenase OS=Homo sapiens GN=
38	Age 60	Age 20	Neuroblast differentiation-associated protein AHNAK O
39	Age 60	Age 20	Serine/arginine-rich splicing factor 2 OS=Homo sapiens
40	Age 20	Age 60	40S ribosomal protein S3a OS=Homo sapiens GN=RPS
41	Age 20	Age 60	Reticulon-3 OS=Homo sapiens GN=RTN3 PE=1 SV=2
42	Age 60	Age 20	GlycinetRNA ligase OS=Homo sapiens GN=GARS PE
43	Age 60	Age 20	Hemoglobin subunit beta OS=Homo sapiens GN=HBB
44	Age 60	Age 20	60S ribosomal protein L18 OS=Homo sapiens GN=RPL
45	Age 60	Age 20	Arginase-1 OS=Homo sapiens GN=ARG1 PE=1 SV=2
46	Age 60	Age 20	Insulin-degrading enzyme OS=Homo sapiens GN=IDE
47	Age 20	Age 60	Pleckstrin homology domain-containing family A member
48	Age 60	Age 20	40S ribosomal protein S20 OS=Homo sapiens GN=RPS
49	Age 60	Age 20	40S ribosomal protein SA OS=Homo sapiens GN=RPS
50	Age 20	Age 60	Prothymosin alpha OS=Homo sapiens GN=PTMA PE=
51	Age 60	Age 20	Desmoplakin OS=Homo sapiens GN=DSP PE=1 SV=3
52	Age 60	Age 20	Tropomyosin alpha-3 chain OS=Homo sapiens GN=TP
53	Age 60	Age 20	T-complex protein 1 subunit zeta OS=Homo sapiens GI
54	Age 60	Age 20	Alpha-enolase OS=Homo sapiens GN=ENO1 PE=1 SV
55	Age 60	Age 20	X-ray repair cross-complementing protein 6 OS=Homo
56	Age 20	Age 60	Twinfilin-1 OS=Homo sapiens GN=TWF1 PE=1 SV=3
57	Age 20	Age 60	Nuclease-sensitive element-binding protein 1 OS=Hom
58	Age 60	Age 20	Glutathione S-transferase P OS=Homo sapiens GN=G
59	Age 60	Age 20	60S acidic ribosomal protein P0 OS=Homo sapiens GN
60	Age 60	Age 20	Carbonic anhydrase 2 OS=Homo sapiens GN=CA2 PE
	Age 60	Age 20	Cytochrome c oxidase subunit 7A2, mitochondrial OS=I
	-	-	-

1	Ago 20	Ago 60	Clutaradovin 1 OS-Homo sanions CN-CL PV PE-1 SV
2			Cutoobromo o ovideo o cubunit 2 OS-Homo conieno CN
3	Age 80	Aye 20	NADL este abraras h 5 reductors 4 00-Hama coniers (
4	Age 20	Age 60	NADH-cytochrome b5 reductase 1 US=Homo sapiens (
5	Age 20	Age 60	Hexokinase-1 US=Homo saplens GN=HK1 PE=1 SV=3
6	Age 20	Age 60	Voltage-dependent anion-selective channel protein 2 O
7	Age 60	Age 20	TATA-binding protein-associated factor 2N OS=Homo s
8	Age 20	Age 60	Single-stranded DNA-binding protein, mitochondrial OS
9	Age 60	Age 20	Histone H1.4 OS=Homo sapiens GN=HIST1H1E PE=1
10	Age 60	Age 20	Ig heavy chain V-III region BRO OS=Homo sapiens PE:
11	Age 60	Age 20	Adenylyl cyclase-associated protein 1 OS=Homo sapier
12	Age 60	Age 20	Creatine kinase U-type, mitochondrial OS=Homo sapier
12	Age 60	Age 20	Heterogeneous nuclear ribonucleoprotein K OS=Homo
17	Age 20	Age 60	Acidic leucine-rich nuclear phosphoprotein 32 family me
14	Age 60	Age 20	Clusterin OS=Homo sapiens GN=CLU PE=1 SV=1
15	Age 60	Age 20	Poly(rC)-binding protein 1 OS=Homo saniens GN=PCB
10	Age 60	Age 20	Protessome subunit alpha type 7 like OS-Homo sapier
17	Age 20		HI A class L histocompatibility antigon A 23 alpha chain
18			Flangation factor 1 gamma OS-Home conjone CN-EE
19	Age 80	Age 20	Acidia lausing rish pusher phasehorratain 20 family m
20	Age 20	Age 60	Actor reucine-non nuclear phosphoprotein 32 family me
21	Age 60	Age 20	Ezrin US=Homo sapiens GN=EZR PE=1 SV=4
22	Age 60	Age 20	F-actin-capping protein subunit alpha-1 OS=Homo sapi
23	Age 60	Age 20	Arginine/serine-rich protein PNISR OS=Homo sapiens (
24	Age 60	Age 20	Serpin B12 OS=Homo sapiens GN=SERPINB12 PE=1
25	Age 60	Age 20	60S ribosomal protein L27 OS=Homo sapiens GN=RPL
26	Age 20	Age 60	Protein S100-A9 OS=Homo sapiens GN=S100A9 PE=1
27	Age 20	Age 60	Complement component 1 Q subcomponent-binding pro
28	Age 60	Age 20	GTP-binding nuclear protein Ran OS=Homo sapiens G
29	Age 60	Age 20	Septin-7 OS=Homo sapiens GN=SEPT7 PE=1 SV=2
30	Age 20	Age 60	40S ribosomal protein S12 OS=Homo sapiens GN=RPS
31	Age 20	Age 60	Cytoplasmic dynein 1 heavy chain 1 OS=Homo sapiens
32	Age 20	Age 60	Keratin, type II cytoskeletal 80 OS=Homo sapiens GN=
33	Age 60	Age 20	Acyl-protein thioesterase 1 OS=Homo sapiens GN=LYF
34	Age 60	Age 20	Peroxiredoxin-6 OS=Homo sapiens GN=PRDX6 PE=1
35	Age 60	Age 20	60S ribosomal protein L17 OS=Homo sapiens GN=RPL
36	Age 20	Age 60	60S ribosomal protein L18a OS=Homo sapiens GN=RF
37	Age 60	Age 20	Protein disulfide-isomerase A6 OS=Homo sapiens GN=
38	Age 60	Age 20	Perinlakin OS=Homo saniens GN=PPI_PF=1_SV=4
39	Age 60	Age 20	Heat shock 70 kDa protein 1A/1B OS=Homo saniens G
40	Age 60		Stress-70 protein mitochondrial OS=Homo sapiens GN
41	Age 60		Protein POE1B OS=Homo saniens GN=POE1B PE=1 5
/)			Carbonia anhydrogo 1 OS-Homo ganiano CN-CA1 DE
42	Age 60	Age 20	Transoldologo OS-Homo conjona ON-TAL DOI DE-1 (
40	Age 60	Age 20	Transaluolase OS-Romo sapiens GN-TALDOT FE-T
44	Age 60	Age 20	Serine/Infeorine-protein phosphalase 2B catalytic subu
45	Age 20	Age 60	Promin-1 US=Homo sapiens GN=PFN1 PE=1 SV=2
40	Age 20	Age 60	Tubulin beta chain OS=Homo sapiens GN=TUBB PE=1
47	Age 60	Age 20	Eukaryotic initiation factor 4A-I OS=Homo sapiens GN=
48	Age 60	Age 20	Redox-regulatory protein FAM213A OS=Homo sapiens
49	Age 20	Age 60	Aldehyde dehydrogenase, mitochondrial OS=Homo sar
50	Age 20	Age 60	Sodium/potassium-transporting ATPase subunit alpha-
51	Age 60	Age 20	Flavin reductase (NADPH) OS=Homo sapiens GN=BL\
52	Age 60	Age 20	Protein S100-A16 OS=Homo sapiens GN=S100A16 PE
53	Age 60	Age 20	Signal recognition particle 9 kDa protein OS=Homo sap
54	Age 20	Age 60	Calreticulin OS=Homo sapiens GN=CALR PE=1 SV=1
55	Age 60	Age 20	Desmocollin-3 OS=Homo sapiens GN=DSC3 PE=1 SV
56	Age 20	Age 60	2-oxoglutarate dehydrogenase, mitochondrial OS=Hom
57	Age 60	Age 20	Plakophilin-1 OS=Homo sapiens GN=PKP1 PE=1 SV=:
58	Age 60	Age 20	Collagen alpha-1(XVII) chain OS=Homo sapiens GN=C
59	Age 60	Age 20	Thioredoxin OS=Homo sapiens GN=TXN PE=1 SV=3
60	Age 60	Age 20	Beta-catenin-interacting protein 1 OS=Homo sapiens G
	Age 60	Age 20	60 kDa heat shock protein, mitochondrial OS=Homo sa
	-	5	• • •

1	A	A	Fileing and the shale OD Harry and into ON FOD DE
2	Age 60	Age 20	Fibrinogen beta chain OS=Homo sapiens GN=FGB PE:
3	Age 60	Age 20	Alpha-1-acid glycoprotein 1 US=Homo sapiens GN=UF
4	Age 20	Age 60	605 hoosomal protein L4 OS=Homo sapiens GN=RPL4
5	Age 60	Age 20	Transmombrane glucepretein NIMP OS=Home appiers
6	Age 60	Age 20	Charling transfer protein OS=Home conjone CN=CLT
7	Age 60	Age 20	Ubiquitin conjugating on two E2 N OS-Home conjugation
8	Age 60	Age 20	Protessome subunit beta type 2 OS-Homo sapiens
9	Age 60	Age 20	Complement factor B OS-Home seriors GN-CEB BE-
10			Aspartate aminotransferase mitochondrial OS-Homo s
11			Elongation factor 2 OS=Homo saniens GN=EEE2 PE=1
12			Spliceosome RNA belicase DDX30B OS=Homo sanien
13			Retroviral-like aspartic protease 1 OS=Homo sapiens G
14	Age 20	Age 60	High mobility group protein B1 OS=Homo sapiens GN=
15	Age 60	Age 20	Programmed cell death 6-interacting protein OS=Homo
10	Age 20	Age 60	1 v6/PLAUR domain-containing protein 3 OS=Homo sar
17	Age 60	Age 20	Dolichyl-dinhosphooligosaccharideprotein glycosyltrar
10	Age 60	Age 20	Dermokine OS=Homo sapiens GN=DMKN PE=1 SV=3
19	Age 60	Age 20	Proteasome subunit alpha type-4 OS=Homo saniens G
20	Age 60	Age 20	Ubiquitin carboxyl-terminal hydrolase 5 OS=Homo sanic
21	Age 60	Age 20	60S ribosomal protein L22 OS=Homo sapiens GN=RPI
22	Age 60	Age 20	Rab GDP dissociation inhibitor beta OS=Homo sapiens
23	Age 60	Age 20	Serine/arginine-rich splicing factor 7 OS=Homo sapiens
25	Age 20	Age 60	ADP-ribosvlation factor 1 OS=Homo sapiens GN=ARF1
26	Age 60	Age 20	60S ribosomal protein L19 OS=Homo sapiens GN=RPL
27	Age 60	Age 20	Tubulin polymerization-promoting protein family membe
28	Age 60	Age 20	Purine nucleoside phosphorylase OS=Homo sapiens G
29	Age 60	Age 20	Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=
30	Age 60	Age 20	Ferritin light chain OS=Homo sapiens GN=FTL PE=1 S
31	Age 20	Age 60	Spectrin beta chain, non-erythrocytic 2 OS=Homo sapie
32	Age 60	Age 20	Peptidyl-prolyl cis-trans isomerase A OS=Homo sapien
33	Age 20	Age 60	Calmodulin-like protein 5 OS=Homo sapiens GN=CALM
34	Age 60	Age 20	Glyceraldehyde-3-phosphate dehydrogenase OS=Hom
35	Age 60	Age 20	Pierce_RT_Cal_Mix
36	Age 60	Age 20	40S ribosomal protein S15a OS=Homo sapiens GN=RF
37	Age 20	Age 60	60S ribosomal protein L12 OS=Homo sapiens GN=RPL
38	Age 60	Age 20	Skin-specific protein 32 OS=Homo sapiens GN=XP32 F
39	Age 20	Age 60	Tubulin alpha-1C chain OS=Homo sapiens GN=TUBA1
40	Age 60	Age 20	Filaggrin-2 OS=Homo sapiens GN=FLG2 PE=1 SV=1
41	Age 60	Age 20	40S ribosomal protein S13 OS=Homo sapiens GN=RP
42	Age 60	Age 20	Heterogeneous nuclear ribonucleoprotein D0 OS=Hom
43	Age 60	Age 20	Rho GTPase-activating protein 1 OS=Homo sapiens GI
44	Age 20	Age 60	Envoplakin OS=Homo sapiens GN=EVPL PE=1 SV=3
45	Age 60	Age 20	605 ribosomal protein L7 OS=Homo sapiens GN=RPL7
40	Age 60	Age 20	A-ray repair cross-complementing protein 5 US=Homo
47	Age 20	Age 60	ATP synthase subunit O, millochondhai OS=Homo sapi
40	Age 60	Age 20	605 hoosomal protein L3 OS=Homo sapiens GN=RPL:
50	Age 60	Age 20	Collagen alpha-T(III) chain OS-Homo sapiens GN-COL
51	Age 60	Age 20	Lastate debudrogenase A chain OS=Home sanions G
52	Age 60	Age 20	Listono U2 2 OS-Homo conjona CN-U2E2A DE-1 SV:
53	Age 20	Age 20	NADH dobydrogopaso [ubiquipopo] 1 alpha subcomplet
54	- ye 20 Δαρ 60		i vensome-associated membrane diveoprotein 1 OS-U
55			Calectin 3 OS-Homo saniens CN-LCAL S3 DE-1 SV-
56			Clathrin heavy chain 1 OS=Homo sapiens GN-CLTC D
57	Age 20		Actin-related protein 2/3 complex subunit 4 OS=Homo
58	Age 20		40S ribosomal protein S10 OS=Homo saniene GN-DD
59	Age 60	Age 20	Proteasome subunit beta type-1 OS=Homo saniens GN
60	Age 60	Age 20	Fukarvotic translation initiation factor 5A-2 OS=Homo s
	Age 20	Age 60	Heterogeneous nuclear ribonucleoprotein LLOS=Homo

1	Age 20	Age 60
2		
3		
4	Age 60	Age 20
5	Age 60	Age 20
6		
/		
8		
9	Ago 60	
10		
11		
12		
13		
14		
15		
10	Age 60	
17		
18		
19		
20		
21		
22	Age 20	
23	Age 60	Age 20
24	Age 20	Age 60
25	Age 20	Age 60
20	Age 60	Age 20
28	Age 60	Age 20
29	Age 60	Age 20
30	Age 20	Age 60
31	Age 60	Age 20
32	Age 20	Age 60
33	Age 20	Age 60
34	Age 60	Age 20
35	Age 20	Age 60
36	Age 60	Age 20
37	Age 60	Age 20
38	Age 20	Age 60
39	Age 20	Age 60
40	Age 60	Age 20
41	Age 20	Age 60
42	Age 60	Age 20
43	Age 20	Age 60
44	Age 60	Age 20
45	Age 20	Age 60
46	Age 60	Age 20
4/	Age 20	Age 60
48	Age 20	Age 60
49 50	Age 20	Age 60
51	Age 20	Age 60
52	Age 60	Age 20
53	Age 20	Age 60
54	Age 60	
55		Mye 20 Δαρ 60
56	Age 60	Age 00 Δge 20
57	Age 20	Age 20
58	Age 60	Age 20
59	Age 60	Age 20
60	Age 60	Age 20
	Age 20	Age 60
	-	<u> </u>

D-3-phosphoglycerate dehydrogenase OS=Homo sapie Collagen alpha-3(VI) chain OS=Homo sapiens GN=CO Glutamate dehvdrogenase 1. mitochondrial OS=Homo Heterogeneous nuclear ribonucleoprotein Q OS=Homo 40S ribosomal protein S18 OS=Homo sapiens GN=RPS Syndecan-1 OS=Homo sapiens GN=SDC1 PE=1 SV=3 T-complex protein 1 subunit epsilon OS=Homo sapiens Heterogeneous nuclear ribonucleoprotein H OS=Homo Decorin OS=Homo sapiens GN=DCN PE=1 SV=1 40S ribosomal protein S4, X isoform OS=Homo sapiens Peroxiredoxin-5, mitochondrial OS=Homo sapiens GN= Heat shock protein HSP 90-alpha OS=Homo sapiens G F-actin-capping protein subunit beta OS=Homo sapiens 40S ribosomal protein S24 OS=Homo sapiens GN=RPS Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 Transitional endoplasmic reticulum ATPase OS=Homo Cofilin-1 OS=Homo sapiens GN=CFL1 PE=1 SV=3 Spectrin beta chain, erythrocytic OS=Homo sapiens GN 60S ribosomal protein L14 OS=Homo sapiens GN=RPL Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE Lumican OS=Homo sapiens GN=LUM PE=1 SV=2 Biglycan OS=Homo sapiens GN=BGN PE=1 SV=2 Putative heat shock protein HSP 90-beta 4 OS=Homo s Phosphoglycerate mutase 1 OS=Homo sapiens GN=P(Rho GTPase-activating protein 29 OS=Homo sapiens (LETM1 and EF-hand domain-containing protein 1, mitor Membrane-associated progesterone receptor compone Cleavage and polyadenylation specificity factor subunit Periostin OS=Homo sapiens GN=POSTN PE=1 SV=2 Fatty acid synthase OS=Homo sapiens GN=FASN PE= Splicing factor, proline- and glutamine-rich OS=Homo s 60S ribosomal protein L7a OS=Homo sapiens GN=RPL 60S ribosomal protein L11 OS=Homo sapiens GN=RPL Chloride intracellular channel protein 1 OS=Homo sapie Reticulon-4 OS=Homo sapiens GN=RTN4 PE=1 SV=2 Keratinocyte differentiation-associated protein OS=Horr Transmembrane protein 109 OS=Homo sapiens GN=TI Ubiguitin-40S ribosomal protein S27a OS=Homo sapier CD44 antigen OS=Homo sapiens GN=CD44 PE=1 SV= 60S acidic ribosomal protein P1 OS=Homo sapiens GN Annexin A5 OS=Homo sapiens GN=ANXA5 PE=1 SV= Aflatoxin B1 aldehyde reductase member 2 OS=Homo : Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE Transgelin-3 OS=Homo sapiens GN=TAGLN3 PE=1 SV L-lactate dehydrogenase B chain OS=Homo sapiens G 26S protease regulatory subunit 6A OS=Homo sapiens Protein S100-A11 OS=Homo sapiens GN=S100A11 PE Mimecan OS=Homo sapiens GN=OGN PE=1 SV=1 Spectrin alpha chain, non-erythrocytic 1 OS=Homo sap 40S ribosomal protein S2 OS=Homo sapiens GN=RPS: Sodium/potassium-transporting ATPase subunit beta-3 Fumarate hydratase, mitochondrial OS=Homo sapiens Ig kappa chain C region OS=Homo sapiens GN=IGKC | ATP synthase subunit alpha, mitochondrial OS=Homo s Protein disulfide-isomerase OS=Homo sapiens GN=P4 Histone H4 OS=Homo sapiens GN=HIST1H4A PE=1 S 14-3-3 protein zeta/delta OS=Homo sapiens GN=YWH/ Alpha-actinin-4 OS=Homo sapiens GN=ACTN4 PE=1 S Plakophilin-3 OS=Homo sapiens GN=PKP3 PE=1 SV=* Guanine nucleotide-binding protein G(I)/G(S)/G(O) subi

1			
2	Age 20	Age 60	TAR DNA-binding protein 43 OS=Homo sapiens GN=T,
2	Age 20	Age 60	Annexin A4 OS=Homo sapiens GN=ANXA4 PE=1 SV=
л Л	Age 20	Age 60	Protein AHNAK2 OS=Homo sapiens GN=AHNAK2 PE=
4	Age 20	Age 60	Serpin B8 OS=Homo sapiens GN=SERPINB8 PE=1 S\
5	Age 60	Age 20	Caspase-14 OS=Homo sapiens GN=CASP14 PE=1 SV
6			40S ribosomal protein S16 OS=Homo saniens GN=RPS
7			Page related protein Bab 5P OS-Homo appiens GN-RA
8	Age 00	Age 20	ATD syntheses subunit bets mitschardvis OC-llams of
9	Age 20	Age 60	ATP synthase subunit beta, mitochondinal OS=Homo sa
10	Age 60	Age 20	Small nuclear ribonucleoprotein-associated protein N O
11	Age 20	Age 60	Ladinin-1 OS=Homo sapiens GN=LAD1 PE=1 SV=2
12	Age 60	Age 20	Myosin-9 OS=Homo sapiens GN=MYH9 PE=1 SV=4
13	Age 20	Age 60	ADP/ATP translocase 2 OS=Homo sapiens GN=SLC25
14	Age 20	Age 60	40S ribosomal protein S8 OS=Homo sapiens GN=RPS
15	Age 60	Age 20	Integrin beta-4 OS=Homo sapiens GN=ITGB4 PE=1 S\
16	Age 20	Age 60	Voltage-dependent anion-selective channel protein 1 O
17	Age 60	Age 20	Calpastatin OS=Homo sapiens GN=CAST PE=1 SV=4
12	Age 20	Age 60	60S ribosomal protein L6 OS=Homo sapiens GN=RPL6
10	Age 20	Age 60	40S ribosomal protein S3 OS=Homo sapiens GN=RPS
19			Putative protein EAM10A/ OS-Homo sapiens CN-ST1
20		Age 20	Futative protein L 21 OS=Homo sopiens CN=DD
21	Age 20	Age 00	US Indeside increases ALOVE2 OC-Home conices
22	Age 60	Age 20	Hydroperoxide isomerase ALOXE3 OS=Homo sapiens
23	Age 20	Age 60	Protein SET OS=Homo sapiens GN=SET PE=1 SV=3
24	Age 20	Age 60	Ras GI Pase-activating-like protein IQGAP1 OS=Homo
25	Age 20	Age 60	Collagen alpha-2(I) chain OS=Homo sapiens GN=COL
26	Age 20	Age 60	Collagen alpha-1(I) chain OS=Homo sapiens GN=COL
27	Age 20	Age 60	60S ribosomal protein L27a OS=Homo sapiens GN=RF
28	Age 60	Age 20	Endoplasmic reticulum resident protein 29 OS=Homo si
29	Age 20	Age 60	Calnexin OS=Homo sapiens GN=CANX PE=1 SV=2
30	Age 20	Age 60	Activated RNA polymerase II transcriptional coactivator
31	Age 20	Age 60	Acid ceramidase OS=Homo sapiens GN=ASAH1 PE=1
32	Age 20	Age 60	Phosphoglycerate kinase 1 OS=Homo sapiens GN=PG
33	Age 20	Age 60	Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 P
34	Age 60	Age 20	Cold-inducible RNA-binding protein OS=Homo sapiens
35		Age 60	Triosenhosphate isomerase OS=Homo saniens GN=TE
36		Age 60	Microsomal dutathione S transferase 3 OS-Homo sani
27			Calcotin 7 OS-Home capions CN-L CAL S7 DE-1 SV-
20	Age 20		Brolomin A/C OS-Home capiens CN-LGALS/ FE-1 SV-,
20	Age 20	Age 60	Prelamin-A/C OS=Homo sapiens GN=LIMINA PE=1 SV=
39	Age 20	Age 60	Keratinocyte proline-rich protein US=Homo sapiens GN
40	Age 20	Age 60	Catenin delta-1 OS=Homo sapiens GN=C1NND1 PE=1
41	Age 60	Age 20	60S ribosomal protein L9 OS=Homo sapiens GN=RPL§
42	Age 20	Age 60	Glycine amidinotransferase, mitochondrial OS=Homo s
43	Age 60	Age 20	Niban-like protein 1 OS=Homo sapiens GN=FAM129B
44	Age 60	Age 20	Band 3 anion transport protein OS=Homo sapiens GN=
45	Age 20	Age 60	60S ribosomal protein L23a OS=Homo sapiens GN=RF
46	Age 60	Age 20	Solute carrier family 2, facilitated glucose transporter m
47	Age 20	Age 60	Acetyl-CoA acetyltransferase, mitochondrial OS=Homo
48	Age 20	Age 60	Heat shock 70 kDa protein 4 OS=Homo sapiens GN=H
49	Age 60	Age 20	Actin-related protein 2/3 complex subunit 3 OS=Homo s
50	Age 60	Age 20	60S ribosomal protein L30 OS=Homo saniens GN=RPI
51		Δαe 20	T-complex protein 1 subunit theta OS=Homo sapiens G
52		Age 60	Alpha 2 macroglobulin like protein 1 OS-Homo sapiens
53			Histono H1 5 OS-Homo sonions CN-HIST1H1P DE-1
54	Ago 20		Collagon alpha 1///II) shain OS-Hama agaiana ON-OC
55	Age 20		Conagen alpha- r(vii) Chain OS=nomo sapiens GN=CC
55	Age 20	Age 60	Creatine kinase B-type US=Homo sapiens GN=CKB PE
50	Age 60	Age 20	ig gamma-1 chain C region OS=Homo sapiens GN=IGI
57	Age 20	Age 60	Ras-related protein Rap-1b-like protein OS=Homo sapi
50 50	Age 20	Age 60	ATP-dependent 6-phosphofructokinase, liver type OS=I
59	Age 20	Age 60	NEDD8 OS=Homo sapiens GN=NEDD8 PE=1 SV=1
60	Age 20	Age 60	40S ribosomal protein S6 OS=Homo sapiens GN=RPS
	Age 20	Age 60	Catenin alpha-1 OS=Homo sapiens GN=CTNNA1 PE=
			•

Age 60	Age 20	40S ribosomal protein S25 OS=Homo sapiens GN=RP
Age 20	Age 60	40S ribosomal protein S9 OS=Homo sapiens GN=RPS
Age 20	Age 60	Prostaglandin E synthase 3 OS=Homo sapiens GN=PT
Age 20	Age 60	Heterogeneous nuclear ribonucleoprotein M OS=Homo
Age 20	Age 60	Heat shock protein beta-1 OS=Homo sapiens GN=HSP
Age 20	Age 60	Tumor-associated calcium signal transducer 2 OS=Hon
Age 20	Age 60	Transgelin-2 OS=Homo sapiens GN=TAGLN2 PE=1 S\
Age 20	Age 60	60S acidic ribosomal protein P2 OS=Homo sapiens GN
Age 20	Age 60	Obg-like ATPase 1 OS=Homo sapiens GN=OLA1 PE=
Age 20	Age 60	Heterogeneous nuclear ribonucleoproteins A2/B1 OS=I
Age 20	Age 60	Prolargin OS=Homo sapiens GN=PRELP PE=1 SV=1

to peries only

```
2
3
4
5
        iens GN=KRT2 PE=1 SV=2
6
        SV=3
7
       | PE=1 SV=1
8
9
        KRT10 PE=1 SV=6
        '=2
10
       =DIAPH2 PE=1 SV=1
11
       €N=GGCT PE=1 SV=1
12
13
       N=PSMA6 PE=1 SV=1
14
15
        =2
16
       \B7A PE=1 SV=1
17
18
19
       PN1 PE=1 SV=1
       SN=NME2 PE=1 SV=1
20
21
22
        ens GN=EIF6 PE=1 SV=1
23
        2AC PE=1 SV=4
        piens GN=ALOX12B PE=1 SV=1
24
25
        _6 PE=1 SV=2
26
        L6A5 PE=1 SV=1
27
        GN=ALDOA PE=1 SV=2
28
       P1 PE=1 SV=2
29
       =2
30
        E=1 SV=1
31
        :3
32
33
        7 PE=1 SV=1
34
35
       x subunit 4 OS=Homo sapiens GN=NDUFA4 PE=1 SV=1
36
        \B8B PE=1 SV=2
37
        F1A1 PE=1 SV=1
38
        IS GN=NPEPPS PE=1 SV=2
39
        :2
40
        SV=5
41
42
       :1 SV=1
43
       Iomo sapiens GN=TGM1 PE=1 SV=4
44
        :2
45
46
        biens GN=APEX1 PE=1 SV=2
47
        V=4
48
        ns GN=SPINK5 PE=1 SV=2
49
       ML3 PE=1 SV=2
50
        _26 PE=1 SV=1
51
       =1 SV=1
52
        _10 PE=1 SV=4
53
        mo sapiens GN=SULT2B1 PE=1 SV=2
54
        ns GN=MDH2 PE=1 SV=3
55
56
       E=1 SV=1
57
        √=2
58
        iens GN=TSPYL4 PE=2 SV=2
59
        =1 SV=4
60
        E=1 SV=2
       =PDIA3 PE=1 SV=4
```

```
S19 PE=1 SV=2
2
        PE=1 SV=3
3
       3 GN=MDH1 PE=1 SV=4
4
       N=DYNLL1 PE=1 SV=1
5
       _13 PE=1 SV=4
6
       3=Homo sapiens GN=PSMD12 PE=1 SV=3
7
8
9
       =Homo sapiens GN=IGF2BP1 PE=1 SV=2
10
       ARD OS=Homo sapiens GN=PYCARD PE=1 SV=2
11
       =BANF1 PE=1 SV=1
12
       T
13
       PE=1 SV=1
14
        SV=1
15
       B2 PE=1 SV=3
16
       s GN=TRIM29 PE=1 SV=2
17
       /IPA2 PE=1 SV=1
18
       in 2 OS=Homo sapiens GN=BAIAP2 PE=1 SV=1
19
       SV=2
20
       Iomo sapiens GN=TGM3 PE=1 SV=4
21
       5 PE=1 SV=4
22
23
       s GN=FABP5 PE=1 SV=3
                                         -=1 S.
24
       alytic subunit OS=Homo sapiens GN=PPP1CC PE=1 SV=1
25
       \1 PE=1 SV=2
26
27
       3
       =1 SV=1
28
29
       N=CCT2 PE=1 SV=4
30
       GN=ALDOC PE=1 SV=2
31
32
       S2 PE=2 SV=2
33
       L6A1 PE=1 SV=3
34
35
36
       1 SV=3
37
       =ALDH3A2 PE=1 SV=1
38
       S=Homo sapiens GN=AHNAK PE=1 SV=2
39
       3 GN=SRSF2 PE=1 SV=4
40
       S3A PE=1 SV=2
41
42
       E=1 SV=3
43
        PE=1 SV=2
44
       _18 PE=1 SV=2
45
46
       PE=1 SV=4
47
       er 7 OS=Homo sapiens GN=PLEKHA7 PE=1 SV=2
48
       S20 PE=1 SV=1
49
       A PE=1 SV=4
50
       1 SV=2
51
52
       'M3 PE=1 SV=2
53
       N=CCT6A PE=1 SV=3
54
       /=2
55
       sapiens GN=XRCC6 PE=1 SV=2
56
57
       o sapiens GN=YBX1 PE=1 SV=3
58
       STP1 PE=1 SV=2
59
       J=RPLP0 PE=1 SV=1
60
       =1 SV=2
       Homo sapiens GN=COX7A2 PE=1 SV=1
```

```
1
       /=2
2
       J=MT-CO2 PE=1 SV=1
3
       GN=CYB5R1 PE=1 SV=1
4
       3
5
       S=Homo sapiens GN=VDAC2 PE=1 SV=2
6
       sapiens GN=TAF15 PE=1 SV=1
7
       S=Homo sapiens GN=SSBP1 PE=1 SV=1
8
        SV=2
9
        =1 SV=1
10
        ns GN=CAP1 PE=1 SV=5
11
       ns GN=CKMT1A PE=1 SV=1
12
        sapiens GN=HNRNPK PE=1 SV=1
13
       ember E OS=Homo sapiens GN=ANP32E PE=1 SV=1
14
15
       3P1 PE=1 SV=2
16
       ns GN=PSMA8 PE=1 SV=3
17
       1 OS=Homo sapiens GN=HLA-A PE=1 SV=1
18
       F1G PE=1 SV=3
19
       ember A OS=Homo sapiens GN=ANP32A PE=1 SV=1
20
21
       iens GN=CAPZA1 PE=1 SV=3
22
       GN=PNISR PE=1 SV=2
23
        SV=1
24
       _27 PE=1 SV=2
25
       1 SV=1
26
       otein, mitochondrial OS=Homo sapiens GN=C1QBP PE=1 SV=1
27
        N=RAN PE=1 SV=3
28
29
30
       S12 PE=1 SV=3
       s GN=DYNC1H1 PE=1 SV=5
31
32
       KRT80 PE=1 SV=2
       PLA1 PE=1 SV=1
33
        SV=3
34
       _17 PE=1 SV=3
35
36
       2L18A PE=1 SV=2
37
       =PDIA6 PE=1 SV=1
38
39
       N=HSPA1A PE=1 SV=5
40
       J=HSPA9 PE=1 SV=2
41
       SV=3
42
        =1 SV=2
43
       SV=2
44
       init alpha isoform OS=Homo sapiens GN=PPP3CA PE=1 SV=1
45
46
       1 SV=2
47
       =EIF4A1 PE=1 SV=1
48
       GN=FAM213A PE=1 SV=3
49
       piens GN=ALDH2 PE=1 SV=2
50
       1 OS=Homo sapiens GN=ATP1A1 PE=1 SV=1
51
       /RB PE=1 SV=3
52
       E=1 SV=1
53
       viens GN=SRP9 PE=1 SV=2
54
55
       '=3
56
       io sapiens GN=OGDH PE=1 SV=3
57
       2
58
       :OL17A1 PE=1 SV=3
59
60
       IN=CTNNBIP1 PE=1 SV=1
       piens GN=HSPD1 PE=1 SV=2
```

=1 SV=2 2 RM1 PE=1 SV=1 3 4 PE=1 SV=5 4 L6A2 PE=1 SV=4 5 GN=GPNMB PE=1 SV=2 6 P PE=1 SV=3 7 GN=UBE2N PE=1 SV=1 8 J=PSMB2 PE=1 SV=1 9 =1 SV=2 10 sapiens GN=GOT2 PE=1 SV=3 11 1 SV=4 12 IS GN=DDX39B PE=1 SV=1 13 3N=ASPRV1 PE=1 SV=1 14 :HMGB1 PE=1 SV=3 15 sapiens GN=PDCD6IP PE=1 SV=1 16 piens GN=LYPD3 PE=1 SV=2 17 nsferase subunit 2 OS=Homo sapiens GN=RPN2 PE=1 SV=3 18 19 N=PSMA4 PE=1 SV=1 20 ens GN=USP5 PE=1 SV=2 21 _22 PE=1 SV=2 22 ; GN=GDI2 PE=1 SV=2 23 3 GN=SRSF7 PE=1 SV=1 24 1 PE=1 SV=2 25 _19 PE=1 SV=1 26 er 3 OS=Homo sapiens GN=TPPP3 PE=1 SV=1 27 **N=PNP PE=1 SV=2** 28 29 :2 ;V=2 30 ens GN=SPTBN2 PE=1 SV=3 31 32 s GN=PPIA PE=1 SV=2 **JL5 PE=1 SV=2** 33 io sapiens GN=GAPDH PE=1 SV=3 34 35 36 PS15A PE=1 SV=2 37 _12 PE=1 SV=1 38 PE=1 SV=1 39 IC PE=1 SV=1 40 41 S13 PE=1 SV=2 42 o sapiens GN=HNRNPD PE=1 SV=1 43 N=ARHGAP1 PE=1 SV=1 44 45 7 PE=1 SV=1 46 sapiens GN=XRCC5 PE=1 SV=3 47 ens GN=ATP5O PE=1 SV=1 48 3 PE=1 SV=2 49 L3A1 PE=1 SV=4 50 Homo sapiens GN=HNRNPC PE=1 SV=4 51 N=LDHA PE=1 SV=2 52 =2 53 x subunit 5 OS=Homo sapiens GN=NDUFA5 PE=1 SV=3 54 omo sapiens GN=LAMP1 PE=1 SV=3 55 5 56 'E=1 SV=5 57 sapiens GN=ARPC4 PE=1 SV=3 58 S10 PE=1 SV=1 59 J=PSMB1 PE=1 SV=2 60 apiens GN=EIF5A2 PE=1 SV=3 sapiens GN=HNRNPU PE=1 SV=6

ens GN=PHGDH PE=1 SV=4 2 L6A3 PE=1 SV=5 3 sapiens GN=GLUD1 PE=1 SV=2 4 sapiens GN=SYNCRIP PE=1 SV=2 5 S18 PE=1 SV=3 6 3 7 GN=CCT5 PE=1 SV=1 8 sapiens GN=HNRNPH1 PE=1 SV=4 9 10 s GN=RPS4X PE=1 SV=2 11 =PRDX5 PE=1 SV=4 12 SN=HSP90AA1 PE=1 SV=5 13 s GN=CAPZB PE=1 SV=4 14 S24 PE=1 SV=1 15 16 sapiens GN=VCP PE=1 SV=4 17 18 **√**=SPTB PE=1 SV=5 19 _14 PE=1 SV=4 20 E=1 SV=2 21 22 23 sapiens GN=HSP90AB4P PE=5 SV=1 24 GAM1 PE=1 SV=2 25 **3N=ARHGAP29 PE=1 SV=2** 26 chondrial OS=Homo sapiens GN=LETM1 PE=1 SV=1 27 Int 2 OS=Homo sapiens GN=PGRMC2 PE=1 SV=1 28 5 OS=Homo sapiens GN=NUDT21 PE=1 SV=1 29 30 =1 SV=3 31 32 apiens GN=SFPQ PE=1 SV=2 _7A PE=1 SV=2 33 _11 PE=1 SV=2 34 ens GN=CLIC1 PE=1 SV=4 35 36 37 no sapiens GN=KRTDAP PE=1 SV=1 38 MEM109 PE=1 SV=1 39 ns GN=RPS27A PE=1 SV=2 40 =3 41 J=RPLP1 PE=1 SV=1 42 :2 43 sapiens GN=AKR7A2 PE=1 SV=3 44 E=1 SV=3 45 V=2 46 N=LDHB PE=1 SV=2 47 GN=PSMC3 PE=1 SV=3 48 E=1 SV=2 49 50 iens GN=SPTAN1 PE=1 SV=3 51 2 PE=1 SV=2 52 OS=Homo sapiens GN=ATP1B3 PE=1 SV=1 53 GN=FH PE=1 SV=3 54 PE=1 SV=1 55 sapiens GN=ATP5A1 PE=1 SV=1 56 HB PE=1 SV=3 57 \$V=2 58 AZ PE=1 SV=1 59 3V=2 60 1 unit gamma-12 OS=Homo sapiens GN=GNG12 PE=1 SV=3

ARDBP PE=1 SV=1 2 :4 3 =1 SV=2 4 **√=**2 5 /=2 6 S16 PE=1 SV=2 7 \B5B PE=1 SV=1 8 apiens GN=ATP5B PE=1 SV=3 9)S=Homo sapiens GN=SNRPN PE=1 SV=1 10 11 12 5A5 PE=1 SV=7 13 8 PE=1 SV=2 14 √=5 15 S=Homo sapiens GN=VDAC1 PE=1 SV=2 16 17 3 PE=1 SV=3 18 3 PE=1 SV=2 19 13P4 PE=5 SV=1 20 _31 PE=1 SV=1 21 GN=ALOXE3 PE=1 SV=1 22 23 sapiens GN=IQGAP1 PE=1 SV=1 24 1A2 PE=1 SV=7 25 1A1 PE=1 SV=5 26 227A PE=1 SV=2 27 apiens GN=ERP29 PE=1 SV=4 28 29 p15 OS=Homo sapiens GN=SUB1 PE=1 SV=3 30 SV=5 31 32 K1 PE=1 SV=3 'E=1 SV=2 33 GN=CIRBP PE=1 SV=1 34 711 PE=1 SV=3 35 36 iens GN=MGST3 PE=1 SV=1 37 2 38 =1 39 J=KPRP PE=1 SV=1 40 1 SV=1 41 9 PE=1 SV=1 42 apiens GN=GATM PE=1 SV=1 43 **PE=1 SV=3** 44 :SLC4A1 PE=1 SV=3 45 2L23A PE=1 SV=1 ember 1 OS=Homo sapiens GN=SLC2A1 PE=1 SV=2 46 47 sapiens GN=ACAT1 PE=1 SV=1 48 SPA4 PE=1 SV=4 49 sapiens GN=ARPC3 PE=1 SV=3 50 _30 PE=1 SV=2 51 **3N=CCT8 PE=1 SV=4** 52 s GN=A2ML1 PE=1 SV=3 53 SV=3 54)L7A1 PE=1 SV=2 55 E=1 SV=1 56 HG1 PE=1 SV=1 57 ens PE=2 SV=1 58 Homo sapiens GN=PFKL PE=1 SV=6 59 60 6 PE=1 SV=1 1 SV=1

1 2 3 4 5	S25 PE=1 SV=1 9 PE=1 SV=3 GES3 PE=1 SV=1 sapiens GN=HNRNPM PE=1 SV=3 PB1 PE=1 SV=2
7	no sapiens GN=TACSTD2 PE=1 SV=3
8	V=3
9	J=RPLP2 PE=1 SV=1
10	1 SV=2
11	Homo sapiens GN=HNRNPA2B1 PE=1 SV=2
12	
13 14	
14	
16	
17	
18	
19	
20	
21	
22	
24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
37	
38	
39	
40	
41	
42 43	
44	
45	
46	
47	
48 40	
49 50	
51	
52	
53	
54	
55 56	
50 57	
58	

- 60

Supplementary Materials and Methods

S.1 Human clinical sample collection and data availably

Collection of skin biopsies and processing for mRNA extraction, target labeling, processing, and analysis has been previously described.² The data reported in this paper have been deposited in the Gene Expression Omnibus (GEO) database, <u>https://www.ncbi.nlm.nih.gov/geo</u> (accession no. <u>GSE112660</u>). No other transcriptomics datasets were generated or analyzed for this manuscript.

S.2 Histology and histomorphometry

Histomorphometry was conducted to observe age-associated skin structural alterations. Hematoxylin and eosin staining was performed on 10 µm cryosections from fresh frozen skin biopsies with the Shandon Rapid-Chrome Frozen Section Staining Kit (Thermofisher Scientific, Kalamazoo, MI) according to manufacturer's recommendations. Sections were fixed with Rapid-Fix, stained with Gill 3 hematoxylin and Eosin-Y, dehydrated with 95% and 100% ethanol, and cleared in xylene. Cover slips were mounted with Shandon Mounting Media (Thermofisher Scientific, Kalamazoo, MI). 10X bright field images of each biopsy were captured with an Olympus BX61 microscope utilizing Cellsens Dimension[™] software. Image Pro Premier software (Mediacybernetics, Rockville, MD) was used to measure epidermal thickness, rete ridge path length and stratum corneum thickness in each biopsy. The thickness of the viable epidermal was measured by tracing two separate lines along the dermal epidermal junction (DEJ) and the epidermal granular

layer, then calculating the average distance between these two lines across the entire epidermal length. Rete ridge path length was measured by taking the ratio of the DEJ length to that of the granular layer. Stratum corneum thickness was measured on 20X bright field images by tracing two separate lines along both the epidermal granular layer and the top of the stratum corneum, then calculating the average distance between these two lines across the entire epidermal length.

S.3 Proteomics

For proteomics analysis (n=5 each of 20's and 60's photo-exposed arm samples), epidermal LCM sections were solubilized in 25 μ l 0.5M TEAB (triethylammonium bicarbonate) containing 0.1% Rapigest. A 2 μ l aliquot is taken for AAA (Amino Acid Analysis), and to the remaining amount 2.5 μ l of 50 μ M TCEP is added to reduce the cysteine residues. 1.3 μ l of 200 μ M MMTS was added to block cysteines. The proteins mixture was digested with LysC (1:10 wt/wt ratio) for 4 hours at 37°C, followed by trypsin addition to the mixture for digestion overnight at 37°C. Digest were then acidified and desalted using a micro-spin C18 RP column. Eluted peptide mixture was dried and reconstituted in UPLC loading Buffer A (0.1% formic acid) and Labelfree quantitative LC-MS/MS was performed on an LTQ Orbitrap Elite (ThermoFisher Scientific) equipped with a Waters Symmetry® C18 (180 μ m x 20 mm) trap column and a 1.7 μ m, 75 μ m x 250 mm nanoAcquityTM UPLCTM column (35°C). Trapping was done using 99% Buffer A (100% water, 0.1% formic acid) and peptide separation was undertaken using a linear gradient of solvents A (0.1% formic acid in water) and B

Page 102 of 110

(0.075% formic acid in acetonitrile) over 210 minutes, at a flow rate of 300 nL/min. MS spectra was acquired in the Orbitrap using 1 microscan and a maximum injection time of 900 ms followed by three data dependant MS/MS acquisitions in the ion trap (with precursor ions threshold of >3000). The total cycle time for both MS and MS/MS acquisition was 2.4 seconds. Peaks targeted for MS/MS fragmentation by collision induced dissociation (CID) were first isolated with a 2 Da window followed by normalized collision energy of 35%. Dynamic exclusion was activated where former target ions were excluded for 30 seconds.

Feature extraction, chromatographic/spectral alignment, data filtering, and statistical analysis were performed using Non-linear Dynamics Progenesis LCMS software (Nonlinear Dynamics, LLC). First, the raw data files were imported into the program. A sample run was chosen as a reference (usually at or near the middle of all runs in a set), and all other runs were automatically aligned to that run in order to minimize retention time (RT) variability between runs. No adjustments are necessary in the m/z dimension due to the high mass accuracy of the mass spectrometer (typically <3 ppm). All runs were selected for detection with an automatic detection limit. Features within RT ranges of 0–16 min and 102–120 min was filtered out, as were features with charge \geq +8. A normalization factor was then calculated for each run to account for differences in sample loading between injections. The experimental design was set up to group multiple injections from each run. The algorithm then calculates and tabulates raw and normalized abundances, max fold change, and ANOVA p-values for each feature in the data set. The MS/MS collected for the experiment were filtered to exclude spectra with rank > 10 or isotope > 3 to ensure that the highest guality MS/MS spectral data are

Page 103 of 110

utilized for peptide assignments and subsequent protein ID. The remaining MS/MS were exported to an .mgf (Mascot generic file) for database searching. After the Mascot search, an .xml file of the results was created, and then imported into the Progenesis LCMS software, where search hits were assigned to corresponding features.

S.4 Skin surface biomarker analysis

Stratum corneum material was collected from each subject's dorsal arm, cheek, and buttock sites. Two sets of three sequential D-Squame tape strip samples (standard sampling discs, 22-mm diameter; CuDerm Corp., Dallas, TX, USA) were collected from each site. Tapes 2 and 3 from an individual site were designated for IL-8 and IL-1RA/IL- 1α ratio analysis and tapes 2 and 3 from a neighboring site were used for biochemical metabolite analysis. The tape samples were collected, stored at -80°C, and total protein and metabolites were extracted as previously described.^{Kerr} IL-1RA and IL-1 α levels were measured by ELISA analysis as per manufacturer's instructions (Bio-Plex Pro Human Cytokine IL-1RA and IL-1 α kits, Bio-Rad, Hercules, CA, USA). IL-8 was quantified using Meso Scale Discovery (MSD) electrochemiluminescence V-Plex kit as per manufacturer's instructions and normalized to the amount of soluble total protein as determined by BCA protein assay (BCA[™] Protein Assay Kit, Pierce Biotechnology/Thermo Scientific, Rockford, IL, USA). For cis- and trans-urocanic acid metabolite profiling, individual tubes containing D-Squame strips were pooled to generate 120 samples with 5 replicates per each collection site from 20's, 40's, and 60's age groups. Metabolomic profiling analysis was performed by Metabolon Inc. (Durham,

NC, USA) as previously described.¹ Welch's two-sample *t*-test, matched pair *t*-test, and Principal Component Analysis (PCA) were used to analyze the data.

¹Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. *Analytical chemistry* 2009: **81**: 6656–6667.

S.5 Epigenetic Aging clock (DNAge®)

Skin DNA was bisulfite converted using the EZ DNA Methylation-Lightning[™] Kit (Zymo Research, Irvine, CA, USA) according to the manufacturer's instructions. Bisulfiteconverted DNA libraries contains >2,000 age-associated CpG loci were prepared for Simplified Whole-panel Amplification Reaction Method (SWARM®) platform, which is a targeted bisulfite-based approach where specific CpG loci were sequenced at >1,000x coverage on a HiSeq sequencer. Sequence reads were identified by base calling software then aligned to the hg19 genome using Bismark, an aligner optimized for bisulfited converted sequences. Methylation levels for each cytosine were calculated by dividing the number of reads reporting a "C" by the number of reads reporting a "C" or "T." The methylation level of >2,000 age-associated CpG loci were used for age prediction using Zymo Research's proprietary DNAge® predictor.

S.6 Immunofluorescence and immunohistology

CDKN2A/p16^{INK4a}

7 μm fresh frozen cryosections were fixed in ice cold acetone for 10 minutes at -20°C, washed in phosphate-buffered saline (PBS), and incubated for 1 hour at room temperature (RT) in 10% normal goat serum in PBS (Cell Signaling Tech, Danvers, MA 5425S). Sections were incubated 1 hour at RT with an anti-CDKN2A/p16^{INK4a} (Abcam, Waltham, MA, ab108349 1:500) antibody, washed in PBS, incubated with an Alexa Fluor 555-conjugated goat anti-rabbit antibody (Abcam, Waltham, MA, ab150086 1:1000) for 1 hour at RT, washed in PBS and counterstained with DAPI using NucBlue fixed cell stain Ready Probes reagent (Invitrogen, Carlsbad, CA). Staining of sections minus the primary antibody served as a negative control and displayed no non-specific staining (data not shown). For comparison fluorescent images of young and old biopsies were captured with a Zeiss Observer.Z1 microscope (Carl Zeiss Microimaging, Germany) at equal gamma values, pixel range and exposures.

$HIF-1\alpha$

 μ m fresh frozen cryosections were fixed in ice cold acetone for 10 minutes at -20°C, washed in PBS, and incubated for 1 hour at RT in 10% normal goat serum in PBS (Cell Signaling Tech, Danvers, MA 5425S). Sections were incubated overnight at 4°C with an anti-HIF-1 α antibody (Sigma, ST. Louis, MO, HPA001275 1:100), washed in PBS, incubated with an Alexa Fluor 555-conjugated goat anti-mouse antibody (Abcam, Waltham, MA, ab150118 1:1000) for 1 hour at RT, washed in PBS, and counterstained with DAPI using NucBlue fixed cell stain Ready Probes reagent (Invitrogen Carlsbad, CA). Staining of sections minus the primary antibody severed as a negative control and

displayed no non-specific staining (data not shown). For comparison fluorescent images of young and old biopsies were captured with a Zeiss Observer.Z1 microscope (Carl Zeiss Microimaging, Germany) at equal gamma values, pixel range and exposures.

Hemoglobin-α

 μ m fresh frozen cryosections were fixed in ice cold Acetone for 10 minutes at -20°C, washed in (PBS), and incubated for 30 minutes at RT in 5% normal mouse serum in PBS (Invitrogen Carlsbad, CA, 31881). Sections were incubated 90 minutes at RT with an anti-hemoglobin- α antibody (Santa Cruz Biotech, Dallas, TX, sc-514378 AF488 1:100), washed in PBS, counterstained using NucBlue fixed cell stain Ready Probes reagent (Invitrogen CA, U.S.A.). Mouse IgG1 isotype negative controls (Invitrogen Carlsbad, CA MA5-18167 1:100) displayed no non-specific staining. For comparison fluorescent images of young and old biopsies were captured with a Zeiss Observer.Z1 microscope (Carl Zeiss Microimaging, Germany) at equal gamma values, pixel range and exposures.

Blood vessel staining utilizing Ulex Europaeus-I Lectin (UEA-1)

7 μm fresh frozen cryosections were fixed in 95% ethanol at RT for 2 minutes, washed in PBS, and incubated with FITC conjugated UEA-1 (Sigma, St. Louis, MO, L9006 1:50 in water) for 2 minutes at RT, washed in PBS, and coverslipped using Fluorshield with DAPI (Sigma, MO, U.S.A., F6057). For comparison fluorescent images of young and

old biopsies were captured with a Zeiss Observer.Z1 microscope (Carl Zeiss Microimaging, Germany) at equal gamma values, pixel range and exposures.

53BP1

Frozen skin sections were briefly thawed and circled with a hydrophobic barrier pen. Sections were rehydrated with PBS and were fixed with 3% paraformaldehyde for 15 minutes at RT. After 2 washes in PBS, sections were subsequently permeabilized with 0.5% Triton-X for 10 minutes at RT. After 3 washes in PBS, sections were blocked with 5% normal donkey serum for 30 minutes at RT. Subsequently, they were incubated overnight in primary antibodies (1:1000 anti-53BP1 Novus Biologicals and 1:250 anti-K10 Dako in 5% normal donkey serum) at 4°C in a humidified chamber. After 3 washes in PBS, appropriate fluorophore-conjugated secondary antibodies (1:800 donkey antirabbit Alexa Fluor 564, 1:800 donkey anti-mouse Alexa Fluor 488 in 5% normal donkey serum) were added for 1 hour at RT. Hoechst dye was used as a nuclear counter-stain. After 3 washes in PBS, sections were mounted in Prolong-Diamond Anti-Fade reagent. Imaging was done at 60X magnification on an Olympus IX-83 inverted fluorescence microscope. Z-stacks were acquired for each position along the length of the skin sample. Projection images were made for each position using Image J and the number of cells showing visible 53BP1 foci were quantified in the K10-positive suprabasal layer and K10-negative basal layer.

Filaggrin and Involucrin
10 µm fresh frozen sections were fixed in ice cold acetone and methanol (1:1) for 10 minutes at -20°C, washed in PBS and incubated for 1 hour at RT in 10% normal goat serum in PBS (Cell Signaling Tech, Danvers, MA 5425S). Sections were incubated overnight at 4°C with an anti-filaggrin (Abcam, Waltham, MA, ab3137 1:100) or an anti-involucrin (Sigma, St. Louis, MO, I9018 1:100) antibody, washed in PBS, incubated with Alexa Fluor 488 conjugated goat anti-mouse antibodies (Abcam, Waltham, MA, ab1500113 1:500) for 1 hour at RT, washed in PBS, and mounted with fluoroshield containing DAPI (Sigma, St. Louis, MO, F6057). Mouse IgG1 isotype negative controls (Invitrogen Carlsbad, CA MA5-18167 1:100) displayed no non-specific staining (data not shown). For comparison fluorescent images of young and old biopsies were captured with a Zeiss Observer.Z1 microscope (Carl Zeiss Microimaging, Germany) at equal gamma values, pixel range and exposures.

Loricrin

7 µm fresh frozen sections were fixed in ice-cold 50% acetone/50% methanol at RT for 5 minutes. Sections were air dried followed by 3 washes in PBS/0.05% Tween 20. They were then blocked with 10% goat serum in PBS for 30 minutes. Subsequently, sections were exposed to anti-loricrin antibody (1:500; Abcam, Singapore, Singapore, ab176322) for 1 hour followed by a 30-minute incubation with an anti-rabbit Alexa Fluor 568 (1:1000; Thermo Fisher, Singapore, Singapore) and a 10-minute counterstain with DAPI (Sigma–Aldrich, Singapore, Singapore) before mounting with Hydromount[™] (Electron Microscopy Sciences).

Keratin 14 and Keratin 10

Skin biopsies were fixed in 4% paraformaldehyde (Sigma-Aldrich, Missouri, United States), serially dehydrated in ethanol, then incubated in Histo-Clear (Scientific Laboratory Supplies, Nottingham, United Kingdom) for 30 minutes, and a 1:1 ratio of Histo-Clear and paraffin wax (Thermo Fisher Scientific, Massachusetts, United States) for 60 minutes. Models were incubated in paraffin wax for 1 hour at 65°C prior to embedding (Solmedia Ltd, Shrewsbury, United Kingdom). 5 µm sections were generated using a microtome (Leica, Wetzlar, Germany) and transferred onto charged microscope slides (Thermo Fisher Scientific). Skin sections were deparaffinised in Histo-Clear and rehydrated from 100% ethanol to PBS. Antigen retrieval was performed using pH 6 citrate buffer at 95°C for 20 minutes. Samples were blocked and permeabilised for 1 hour in a blocking buffer of 20% neonatal calf serum (Thermo Fisher Scientific, Massachusetts, United States) in 0.4% Triton X-100 in PBS. Sections were incubated overnight in primary antibodies (1:100 cytokeratin 14 ab7800; 1:100 cytokeratin 10 ab76318; Abcam, Cambridge, UK) at 4°C in a humidified chamber. After 3 washes in PBS, appropriate fluorophore-conjugated secondary antibodies (1:1000 donkey anti-mouse Alexa Fluor[®] 488, 1:1000 donkey anti-rabbit Alexa Fluor[®] 594) were added for 1 hour at RT. After 3 washes in PBS, sections were mounted in Vectashield Hardset with DAPI mounting medium (Vector Laboratories, Peterborough, United Kingdom). 40X images were captured at equal gamma values, pixel range and exposures using a Zeiss 880 confocal microscope (Zeiss, Oberkochen, Germany) with Zen software.

tor Review Only