3 research outputs found

    Analysis of the circRNA and T-UCR populations identifies convergent pathways in mouse and human models of Rett syndrome

    Get PDF
    Noncoding RNAs play regulatory roles in physiopathology, but their involvement in neurodevelopmental diseases is poorly understood. Rett syndrome is a severe, progressive neurodevelopmental disorder linked to loss-of-function mutations of the MeCP2 gene for which no cure is yet available. Analysis of the noncoding RNA profile corresponding to the brain-abundant circular RNA (circRNA) and transcribed-ultraconserved region (T-UCR) populations in a mouse model of the disease reveals widespread dysregulation and enrichment in glutamatergic excitatory signaling and microtubule cytoskeleton pathways of the corresponding host genes. Proteomic analysis of hippocampal samples from affected individuals confirms abnormal levels of several cytoskeleton-related proteins together with key alterations in neurotransmission. Importantly, the glutamate receptor GRIA3 gene displays altered biogenesis in affected individuals and in vitro human cells and is influenced by expression of two ultraconserved RNAs. We also describe post-transcriptional regulation of SIRT2 by circRNAs, which modulates acetylation and total protein levels of GluR-1. As a consequence, both regulatory mechanisms converge on the biogenesis of AMPA receptors, with an effect on neuronal differentiation. In both cases, the noncoding RNAs antagonize MeCP2-directed regulation. Our findings indicate that noncoding transcripts may contribute to key alterations in Rett syndrome and are not only useful tools for revealing dysregulated processes but also molecules of biomarker value

    The transcribed pseudogene RPSAP52 enhances the oncofetal HMGA2-IGF2BP2-RAS axis through LIN28B-dependent and independent let-7 inhibition

    No full text
    Altres ajuts: We thank CERCA Program/Generalitat de Catalunya for their institutional support. This work was also supported by the Fundació La Marató de TV3, grant number #20131610 (S.G.), the AECC-Junta de Barcelona (S.G.), the Fundación Científica de la AECC under grant GCB13131578DEÁ (O.M.T.), the Health and Science Departments of the Catalan Government (Gen-eralitat de Catalunya). C.O.-M. is a pre-doctoral fellow funded by the Basque Government (PRE_2013_1_1009).One largely unknown question in cell biology is the discrimination between inconsequential and functional transcriptional events with relevant regulatory functions. Here, we find that the oncofetal HMGA2 gene is aberrantly reexpressed in many tumor types together with its antisense transcribed pseudogene RPSAP52. RPSAP52 is abundantly present in the cytoplasm, where it interacts with the RNA binding protein IGF2BP2/IMP2, facilitating its binding to mRNA targets, promoting their translation by mediating their recruitment on polysomes and enhancing proliferative and self-renewal pathways. Notably, downregulation of RPSAP52 impairs the balance between the oncogene LIN28B and the tumor suppressor let-7 family of miRNAs, inhibits cellular proliferation and migration in vitro and slows down tumor growth in vivo. In addition, high levels of RPSAP52 in patient samples associate with a worse prognosis in sarcomas. Overall, we reveal the roles of a transcribed pseudogene that may display properties of an oncofetal master regulator in human cancers

    Peptide Nucleic Acids for MicroRNA Targeting

    No full text
    The involvement of microRNAs in human pathologies is firmly established. Accordingly, the pharmacological modulation of microRNA activity appears to be a very interesting approach in the development of new types of drugs (miRNA therapeutics). One important research area is the possible development of miRNA therapeutics in the field of rare diseases. In this respect, appealing molecules are based on peptide nucleic acids (PNAs), displaying, in their first description, a pseudo-peptide backbone composed of N-(2-aminoethyl)glycine units, and found to be excellent candidates for antisense and antigene therapies. The aim of the present article is to describe methods for determining the activity of PNAs designed to target microRNAs involved in cystic fibrosis, using as model system miR-145-5p and its target cystic fibrosis transmembrane conductance regulator (CFTR) mRNA. The methods employed to study the effects of PNAs targeting miR-145-5p are presented here by discussing data obtained using as cellular model system the human lung epithelial Calu-3 cell line
    corecore