283 research outputs found

    Tensile properties of long untreated and alkali treated Napier grass fiber strands/epoxy composites

    Get PDF
    Napier grass fiber strands were extracted using the combined mechanical and water retting process. The extracted fiber strands were treated with various proportions (5, 10 and 15% w/v) of NaOH solution to improve their surface morphology and bonding with the resin. This study investigates the Tensile properties of composites made by reinforcing alkali treated, long Napier grass fiber strands in to epoxy resin with different orientations (0º). The composites were prepared with 0, 5, 10, and 15% of alkali treatment and with a fiber loading (weight %) of 10, 20, and 30%. The effect of alkali treatment, orientation and fiber loading on the tensile strength of the composites was analyzed using universal testing machine. Quantitative results from this study will be useful for more accurate design of Napier grass fiber strand reinforced composite materials for possible automotive applications

    Effect of chemicals treatment and fiber loading on mechanical properties of borassus (Toddy palm) fiber/epoxy composites

    Get PDF
    Abstract: The aim of the present study was to investigate and compare the mechanical properties of untreated and chemically modified Borassus fiber reinforced epoxy composites. Composites were prepared by hand lay-up process by reinforcing Borassus fibers with epoxy matrix. To improve the fiber-matrix adhesion properties, alkali (NaOH), and alkali combined with silane (3- aminopropyltriethoxysilane) treatments on the fibers surface were carried out. Examinations through Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were conducted to investigate the structural and physical properties of the Borassus fibers. Tensile properties such as modulus and strength of the composites made by chemically modified and untreated Borassus fibers were studied using a Universal Testing Machine (UTM). Based on the experimental results, it was found that the tensile properties of the Borassus reinforced epoxy composites were significantly improved, as compared with the neat epoxy. It was also found that the fiber treated with combination of alkali and silane exhibited superior mechanical properties as compared with alkali and untreated fiber composites. The nature of fiber/matrix interface was examined through SEM of cryo-fractured samples. Chemical resistance of composites was also found to be improved with chemically modified fiber composites

    Extraction and characterization of novel lignocellulosic fibers from Thespesia lampas plant

    Get PDF
    In this work, the lignocellulosic fibers from the plant Thespesia lampas were extracted and investigated in detail. The prime objective of this work was to study the effect of alkali treatment on the chemical composition, tensile properties, morphological and structural changes, and thermal degradation of Thespesia lampas fibers. Chemical analysis, FT-IR, and 13C CP-MAS NMR spectroscopic studies indicated lowering of amorphous hemicellulose content on alkali treatment. Wide-angle X-ray diffraction studies indicated increase in crystallinity of the fibers on alkali treatment. The tensile strength and modulus of the fibers and thermal stability increased on alkali treatment. Scanning electron micrographs revealed roughening of the surface of the fibers due to the removal of the hemicellulose layer on alkali treatment. Tensile properties of Thespesia fibers were compared to those of other important natural fibers, and it was indicated as an alternative suitable source for composite construction

    Properties of cellulose/Thespesia Lampas short fibers bio-composite films

    Get PDF
    Abstract: Cellulose was dissolved in pre cooled environment friendly solvent (aq.7% sodium hydroxide+12% urea) and regenerated with 5%H2SO4 as coagulation bath. Using cellulose as matrix and alkali treated short natural fibers extracted from the newly identified Thespesia Lampas plant as reinforcement, the green composite films were prepared. The effect of fiber loading on the tensile properties and thermal stability was studied. The fractographs indicated better interfacial bonding between the fibers and cellulose. The crystallinity of the composite films was found to be lower than the matrix and decreased with increasing fiber content. In spite of better interfacial bonding, the tensile properties of the composites were found to be lower than those of the matrix and decreased with increasing fiber content and this behavior was attributed to the random orientation of the fibers in the composites. The thermal stability of the composite films was higher than the matrix and increased with fiber content

    Tensile and thermal properties of poly(lactic acid)/eggshell powder composite films

    Get PDF
    Biodegradable composite films of poly(lactic acid) (PLA)=eggshell powder (ESP) were prepared by the composite film casting method using chloroform as the solvent. ESP was loaded in PLA in 1 to 5 wt.%. The films were subjected to tensile, FT-IR spectral, thermogravimetric, X-ray, and microscopic analyses. The tensile strength and modulus of the composite films were found to be higher than those of PLA and increased with ESP content up to 4 wt.% and then decreased. A reverse trend was observed in the case of percentage elongation at break. The X-ray diffractograms of the composite films indicated an increase in crystallinity with ESP content. The optical micrographs indicated uniform distribution of ESP particles in the composite films. However, the fractographs indicated agglomeration of ESP particles at 5 wt.% loading. The FT-IR spectra revealed no specific interactions between PLA and ESP. The thermal stability of the composite films increased with ESP content

    Preparation and properties of biodegradable spent tea leaf powder/poly(propylene carbonate) composite films

    Get PDF
    Abstract: The aim of the present work is to develop novel biobased lightweight material with improved tensile and thermal properties. Spent tea leaf powder (STLP) is used as a filler to improve the tensile and thermal properties of polypropylene carbonate (PPC). Tea is an important material of hotels and household and spent tea leaf forms a conjugal solid waste. Composite films are obtained by solution casting method. These films are characterized by Optical microscopy, scanning electron microscopy, Fourier transforms infrared spectroscopy, thermogravimetric analysis and tensile testing to examine the effect of filler content on the properties of the composites. The results have shown that composite films are having increased tensile strength due to enhanced interfacial adhesion between the filler and the matrix. In addition, the composite films have also exhibited higher thermal degradation temperatures compared to pure polypropylene carbonate. The morphology results indicate that there is a good interface interaction between STLP and PPC. Results of the study reveal STLP to be a promising green filler for polymer plastics

    Incremental Hemodialysis: The University of California Irvine Experience.

    Get PDF
    Incremental hemodialysis has been examined as a viable hemodialysis regimen for selected end-stage renal disease (ESRD) patients. Preservation of residual kidney function (RKF) has been the driving impetus for this approach given its benefits upon the survival and quality of life of dialysis patients. While clinical practice guidelines recommend an incremental start of dialysis in peritoneal dialysis patients with substantial RKF, there remains little guidance with respect to incremental hemodialysis as an initial renal replacement therapy regimen. Indeed, several large population-based studies suggest that incremental twice-weekly vs. conventional thrice-weekly hemodialysis has favorable impact upon RKF trajectory and survival among patients with adequate renal urea clearance and/or urine output. In this report, we describe a case series of 13 ambulatory incident ESRD patients enrolled in a university-based center's Incremental Hemodialysis Program over the period of January 2015 to August 2016 and followed through December 2016. Among five patients who maintained a twice-weekly hemodialysis schedule vs. eight patients who transitioned to thrice-weekly hemodialysis, we describe and compare patients' longitudinal case-mix, laboratory, and dialysis treatment characteristics over time. The University of California Irvine Experience is the first systemically examined twice-weekly hemodialysis practice in North America. While future studies are needed to refine the optimal approaches and the ideal patient population for implementation of incremental hemodialysis, our case-series serves as a first report of this innovative management strategy among incident ESRD patients with substantial RKF, and a template for implementation of this regimen

    Not Available

    Get PDF
    Not AvailableArunachal Pradesh, the largest mountainous state of India, is situated in the northeastern part of the Himalayan region and characterized by high annual rainfall, forest vegetation and diversity in soils. Information on the soils of the state is essential for scientific land use planning and sustainable production. A soil resource inventory and subsequent database creation for thematic mapping using a Geographical Information System (GIS) is presented in this paper. Physiographically, Arunachal Pradesh can be divided into four distinct zones: snow-capped mountains (5500 m amsl); lower Himalayan ranges (3500 m amsl); the sub-Himalayan Siwalik hills (700 m amsl); and the eastern Assam plains. Soils occurring in these physiographic zones are lnceptisols (37 percent), Entisols (35 per- cent), Ultisols (14 percent) and Alfisols (0.5 percent). The remaining soils can be classed as miscellaneous. Soil resource inventory studies show that the soils of the warm perhumid eastern Himalayan ecosystem, with a ‘thermic’ temperature regime, are lnceptisols and Entisols; and that they are highly acidic in nature. Soils of the warm perhumid Siwalik hill ecosystem, with a ‘hyperthermic’ temperature regime, are also Entisols and lnceptisols with a high to moderate acidic condition. The dominant soils of the northeastern Purvachal hill ecosystem, with ‘hyperthermic’ and ‘thermic’ temperature regimes, are Ultisols and Inceptisols. lnceptisols and Entisols are the dominant soils in the hot and humid plain ecosystem. Steeply sloping landform and high rainfall are mainly responsible for a high erosion hazard in the state. The soil erosion map indicates that very severe (20 percent of TGA) to severe (25 percent of TGA) soil erosion takes place in the warm per-humid zone, whereas, moderate erosion takes place in the Siwalik hills and hot, humid plain areas. This is evident from the soil depth class distribution of Arunachal Pradesh, which shows that shallow soils cover 20 percent of the TGA of the state. Most of the the state is covered by hills and agri- cultural practices are limited to valley regions, However, the soils of other physiographic zones (lower altitudinal, moderately hilly terrain) provide scope for plantations, such as orange, banana and tea plantations.Not Availabl

    Galaxy Evolution in the Radio Band: The Role of Starforming Galaxies and Active Galactic Nuclei

    Get PDF
    We investigate the astrophysics of radio-emitting star-forming galaxies and active galactic nuclei (AGNs), and elucidate their statistical properties in the radio band including luminosity functions, redshift distributions, and number counts at sub-mJy flux levels, that will be crucially probed by next-generation radio continuum surveys. Specifically, we exploit the model-independent approach by Mancuso et al. (2016a,b) to compute the star formation rate functions, the AGN duty cycles and the conditional probability of a star-forming galaxy to host an AGN with given bolometric luminosity. Coupling these ingredients with the radio emission properties associated to star formation and nuclear activity, we compute relevant statistics at different radio frequencies, and disentangle the relative con- tribution of star-forming galaxies and AGNs in different radio luminosity, radio flux, and redshift ranges. Finally, we highlight that radio-emitting star-forming galaxies and AGNs are expected to host supermassive black holes accreting with different Eddington ratio distributions, and to occupy different loci in the galaxy main sequence diagrams. These specific predictions are consistent with current datasets, but need to be tested with larger statistics via future radio data with multi-band coverage on wide areas, as it will become routinely achievable with the advent of the SKA and its precursors
    • …
    corecore