627 research outputs found
Recommended from our members
A Comparison of Patient History- and EKG-based Cardiac Risk Scores.
Patient-specific risk scores are used to identify individuals at elevated risk for cardiovascular disease. Typically, risk scores are based on patient habits and medical history - age, sex, race, smoking behavior, and prior vital signs and diagnoses. We explore an alternative source of information, a patient's raw electrocardiogram recording, and develop a score of patient risk for various outcomes. We compare models that predict adverse cardiac outcomes following an emergency department visit, and show that a learned representation (e.g. deep neural network) of raw EKG waveforms can improve prediction over traditional risk factors. Further, we show that a simple model based on segmented heart beats performs as well or better than a complex convolutional network recently shown to reliably automate arrhythmia detection in EKGs. We analyze a large cohort of emergency department patients and show evidence that EKG-derived scores can be more robust to patient heterogeneity
Could you have said no ? A mixed-methods investigation of consent to HIV tests in four African countries
Introduction: Although most studies report high frequencies of consent to HIV tests, critics argue that clients are subject to pressure, that acceptors later indicate they could not have refused, and that provider-initiated HIV testing raises serious ethical issues. We examine the meaning of consent and why clients think they could not have refused. Methods: Clients in Burkina Faso, Kenya, Malawi and Uganda were asked about consenting to HIV tests, whether they thought they could have refused and why. Textual responses were analyzed using qualitative and statistical methods. Results: Among 926 respondents, 77% reported they could not have said no, but in fact, 60% actively consented to test, 24% had no objection and only 7% tested without consent. There were few significant associations between categories of consent and their covariates. Conclusions: Retrospectively asking clients if they could have refused to test for HIV overestimates coercion. Triangulating qualitative and quantitative data suggests a considerable degree of agency
Functional Domains of the Fatty Acid Transport Proteins: Studies Using Protein Chimeras
Fatty acid transport proteins (FATP) function in fatty acid trafficking pathways, several of which have been shown to participate in the transport of exogenous fatty acids into the cell. Members of this protein family also function as acyl CoA synthetases with specificity towards very long chain fatty acids or bile acids. These proteins have two identifying sequence motifs: The ATP/AMP motif, an approximately 100 amino acid segment required for ATP binding and common to members of the adenylate-forming super family of proteins, and the FATP/VLACS motif that consists of approximately 50 amino acid residues and is restricted to members of the FATP family. This latter motif has been implicated in fatty acid transport in the yeast FATP orthologue Fat1p. In the present studies using a yeast strain containing deletions in FAT1 (encoding Fat1p) and FAA1 (encoding the major acyl CoA synthetase (Acsl) Faa1p) as an experimental platform, the phenotypic and functional properties of specific murine FATP1-FATP4 and FATP6-FATP4 protein chimeras were evaluated in order to define elements within these proteins that further distinguish the fatty acid transport and activation functions. As expected from previous work FATP1 and FATP4 were functional in the fatty acid transport pathway, while and FATP6 was not. All three isoforms were able to activate the very long chain fatty acids arachidonate (C20:4) and lignocerate (C24:0), but with distinguishing activities between saturated and highly unsaturated ligands. A 73 amino acid segment common to FATP1 and FATP4 and between the ATP/AMP and FATP/VLACS motifs was identified by studying the chimeras, which is hypothesized to contribute to the transport function
Functional Domains of the Fatty Acid Transport Proteins: Studies Using Protein Chimeras
Fatty acid transport proteins (FATP) function in fatty acid trafficking pathways, several of which have been shown to participate in the transport of exogenous fatty acids into the cell. Members of this protein family also function as acyl CoA synthetases with specificity towards very long chain fatty acids or bile acids. These proteins have two identifying sequence motifs: The ATP/AMP motif, an approximately 100 amino acid segment required for ATP binding and common to members of the adenylate-forming super family of proteins, and the FATP/VLACS motif that consists of approximately 50 amino acid residues and is restricted to members of the FATP family. This latter motif has been implicated in fatty acid transport in the yeast FATP orthologue Fat1p. In the present studies using a yeast strain containing deletions in FAT1 (encoding Fat1p) and FAA1 (encoding the major acyl CoA synthetase (Acsl) Faa1p) as an experimental platform, the phenotypic and functional properties of specific murine FATP1-FATP4 and FATP6-FATP4 protein chimeras were evaluated in order to define elements within these proteins that further distinguish the fatty acid transport and activation functions. As expected from previous work FATP1 and FATP4 were functional in the fatty acid transport pathway, while and FATP6 was not. All three isoforms were able to activate the very long chain fatty acids arachidonate (C20:4) and lignocerate (C24:0), but with distinguishing activities between saturated and highly unsaturated ligands. A 73 amino acid segment common to FATP1 and FATP4 and between the ATP/AMP and FATP/VLACS motifs was identified by studying the chimeras, which is hypothesized to contribute to the transport function
Efficacious, effective, and embedded interventions: Implementation research in infectious disease control
Background: Research in infectious disease control is heavily skewed towards high end
technology; development of new drugs, vaccines and clinical interventions. Oft ignored, is the
evidence to inform the best strategies that ensure the embedding of interventions into health
systems and amongst populations. In this paper we undertake an analysis of the challenge in the
development of research for the sustainable implementation of disease control interventions.
Results: We highlight the fundamental differences between the research paradigms associated
with the development of technologies and interventions for disease control on the one hand and the research paradigms required for enhancing the sustainable uptake of those very same
interventions within the communities on the other. We provide a definition for implementation
research in an attempt to underscore its critical role and explore the multidisciplinary science
needed to address the challenges in disease control.
Conclusion: The greatest value for money in health research lies in the sustainable and effective implementation of already proven, efficacious solutions. The development of implementation research that can help provide some solutions on how this can be achieved is sorely needed
- …