92 research outputs found

    From ARTEMIS Requirements to a Cross-Domain Embedded System Architecture

    Get PDF
    International audienceThis paper gives an overview of the cross-domain component-based architecture GENESYS for embedded systems. The development of this architecture has been driven by key industrial challenges identified within the ARTEMIS Strategic Research Agenda (SRA) such as composability, robustness and integrated resource management. GENESYS is a platform architecture that provides a minimal set of core services and a plurality of optional services that are predominantly implemented as self-contained system components. Choosing a suitable set of these system components that implement optional services, augmented by application specific components, can generate domain-specific instantiations of the architecture (e.g., for automotive, avionic, industrial control, mobile, and consumer electronics applications). Such a cross-domain approach is needed to support the coming Internet of Things, to take full advantage of the economies of scale of the semiconductor industry and to improve productivity

    Global Adaptation Controlled by an Interactive Consistency Protocol

    Get PDF
    Static schedules for systems can lead to an inefficient usage of the resources, because the system’s behavior cannot be adapted at runtime. To improve the runtime system performance in current time-triggered Multi-Processor System on Chip (MPSoC), a dynamic reaction to events is performed locally on the cores. The effects of this optimization can be increased by coordinating the changes globally. To perform such global changes, a consistent view on the system state is needed, on which to base the adaptation decisions. This paper proposes such an interactive consistency protocol with low impact on the system w.r.t. latency and overhead. We show that an energy optimizing adaptation controlled by the protocol can enable a system to save up to 43% compared to a system without adaptation

    The GENESYS Architecture: A Conceptual Model for Component-Based Distributed Real-Time Systems

    Get PDF
    Abstract. This paper proposes a conceptual model and terminology for componentbased development of distributed real-time systems. Components are built on top of a platform, which offers core platform services as the basis for the implementation and integration of components. The core platform services enable emergence of global application services of the overall system out of local application services of the constituting components. Therefore, the core platform services provide elementary capabilities for the interaction of components, such as message-based communication between components or a global time base. Also, the core services are the instrument via which a component creates behavior that is externally visible at the component interface. In addition, the specification of a component's interface builds upon the concepts and operations of the core platform services. The component interface specification constrains the use of these operations and assigns contextual information (e.g., semantics in relation to the component environment) and significant properties (e.g., reliability requirements, energy constraints). Hence, the core platform services are a key aspect in the interaction between integrator and component developer

    Optimizing Performance of Continuous-Time Stochastic Systems using Timeout Synthesis

    Full text link
    We consider parametric version of fixed-delay continuous-time Markov chains (or equivalently deterministic and stochastic Petri nets, DSPN) where fixed-delay transitions are specified by parameters, rather than concrete values. Our goal is to synthesize values of these parameters that, for a given cost function, minimise expected total cost incurred before reaching a given set of target states. We show that under mild assumptions, optimal values of parameters can be effectively approximated using translation to a Markov decision process (MDP) whose actions correspond to discretized values of these parameters

    Multi-core devices for safety-critical systems: a survey

    Get PDF
    Multi-core devices are envisioned to support the development of next-generation safety-critical systems, enabling the on-chip integration of functions of different criticality. This integration provides multiple system-level potential benefits such as cost, size, power, and weight reduction. However, safety certification becomes a challenge and several fundamental safety technical requirements must be addressed, such as temporal and spatial independence, reliability, and diagnostic coverage. This survey provides a categorization and overview at different device abstraction levels (nanoscale, component, and device) of selected key research contributions that support the compliance with these fundamental safety requirements.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under grant TIN2015-65316-P, Basque Government under grant KK-2019-00035 and the HiPEAC Network of Excellence. The Spanish Ministry of Economy and Competitiveness has also partially supported Jaume Abella under Ramon y Cajal postdoctoral fellowship (RYC-2013-14717).Peer ReviewedPostprint (author's final draft

    Work in Progress – Establishing a Master Program in Cyber Physical Systems: Basic Findings and Future Perspectives

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper reports on the basic findings and future perspectives of a capacity building project funded by the European Union. The International Master of Science on Cyber Physical Systems (MS@CPS) is a collaborative project that aims to establish a master program in cyber physical systems (CPS). A consortium composed of nine partners proposed the project. Three partners are European and from Germany, UK and Sweden; while the other six partners are from the South Mediterranean region and include: Palestine, Jordan and Tunisia. The consortium is led by the University of Siegen in Germany who also manages the implementation of the work packages. CPS is an emerging engineering subject with significant economic and societal implications, which motivated the consortium to propose the establishment of a master program to offer educational and training opportunities at graduate level in the fields of CPS. In this paper, CPS as a field of study is introduced with an emphasis on its importance, especially with regard to meeting local needs. A brief description of the project is presented in conjunction with the methodology for developing the courses and their learning outcomes

    Multi-criteria Resource Allocation in Modal Hard Real-Time Systems

    Get PDF
    In this paper, a novel resource allocation approach dedicated to hard real-time systems with distinctive operational modes is proposed. The aim of this approach is to reduce the energy dissipation of the computing cores by either powering them off or switching them into energy-saving states while still guaranteeing to meet all timing constraints. The approach is illustrated with two industrial applications, an engine control management and an engine control unit. Moreover, the amount of data to be migrated during the mode change is minimised. Since the number of processing cores and their energy dissipation are often negatively correlated with the amount of data to be migrated during the mode change, there is some trade-off between these values, which is also analysed in this paper

    Time-triggered communication

    No full text
    • …
    corecore