2,456 research outputs found

    Compton scattering sequence reconstruction algorithm for the liquid xenon gamma-ray imaging telescope (LXeGRIT)

    Get PDF
    The Liquid Xenon Gamma-Ray Imaging Telescope (LXeGRIT) is a balloon born experiment sensitive to \g -rays in the energy band of 0.2-20 MeV. The main detector is a time projection chamber filled with high purity liquid xenon (LXeTPC), in which the three-dimensional location and energy deposit of individual \g -ray interactions are accurately measured in one homogeneous volume. To determine the \g -ray initial direction (Compton imaging), as well as to reject background, the correct sequence of interactions has to be determined. Here we report the development and optimization of an algorithm to reconstruct the Compton scattering sequence and show its performance on Monte Carlo events and LXeGRIT data.Comment: To appear in: Hard X-Ray, Gamma-Ray, and Neutron Detector Physics II, 2000; Proc. SPIE, vol. 4141; R.B. James & R.C. Schirato, ed

    Gamma-Ray Line Emission from Superbubbles in the Interstellar Medium: The Cygnus Region

    Get PDF
    The star forming process in the Milky Way is non-uniform in time and space. The scale of star forming regions ranges from groups within a few pc to large segments of spiral arms with linear dimension of order kpc. When many stars form in a relatively small volume over a short duration, a localized starburst ensues. The energetic impact of such a burst of star formation can severely affect the dynamic structure of the gaseous disk. Stellar winds and supernova explosions drive an expanding superbubble, whose size eventually exceeds the scale height of the disk and thus drives a disk-wind blowing metal enriched gas into the halo. We discuss the basic scenario of superbubble evolution, emphasizing the associated gamma-ray line signatures. In particular, we discuss nuclear line emission from 26Al and 60Fe in the Cygnus region

    Spectroscopy and Imaging Performance of the Liquid Xenon Gamma-Ray Imaging Telescope (LXeGRIT)

    Get PDF
    LXeGRIT is a balloon-borne Compton telescope based on a liquid xenon time projection chamber (LXeTPC) for imaging cosmic \g-rays in the energy band of 0.2-20 MeV. The detector, with 400 cm2^2 area and 7 cm drift gap, is filled with high purity LXe. Both ionization and scintillation light signals are detected to measure the energy deposits and the three spatial coordinates of individual \g -ray interactions within the sensitive volume. The TPC has been characterized with repeated measurements of its spectral and Compton imaging response to \g -rays from radioactive sources such as \na, \cs, \yt and Am-Be. The detector shows a linear response to \g -rays in the energy range 511 keV -4.4 MeV, with an energy resolution (FWHM) of \Delta E/E=8.8% \: \sqrt{1\MeV /E}. Compton imaging of \yt \g -ray events with two detected interactions is consistent with an angular resolution of \sim 3 degrees (RMS) at 1.8 MeV.Comment: To appear in: Hard X-Ray, Gamma-Ray and Neutron Detector Physics XI, 2000; Proc. SPIE, vol. 4140; K.A. Flanagan & O.H. Siegmund, ed

    Activation in the COMPTEL double-scattering gamma-ray telescope

    Get PDF
    Abstract-The COMPTEL gamma-ray telescope has been operating in low Earth orbit for six years, since the launch of the Compton Gamma-Ray Observatory in April 1991. Comparisons of data for different orbits and epochs show evidence of activation on time scales from minutes (27Mg, q,2=9.5 min) to years C2Na, q&.58 yr). The activation is correlated with both the orbital altitude and solar cosmic-ray modulation. Because it requires coincident measurements in two different detectors, COMPTEL is most susceptible to instrumental background events in which two or more photons are produced simultaneously

    COMPTEL 1.8 MeV all sky survey: The Cygnus region

    Get PDF
    We present an updated version of COMPTEL’s 1.809 MeV sky survey. Based on eight years of observations we compare results from different imaging techniques using background from adjacent energy bands. We confirm the previously reported characteristics of the galactic 1.809 MeV emission, specifically an extended galactic ridge emission, mainly concentrated towards the inner galaxy, a peculiar emission feature in the Cygnus region, and a low-intensity ridge extending towards Carina and Vela. Because this gamma ray line is due to the decay of radioactive 26Al, predominantly synthesized in massive stars, one anticipates flux enhancements aligned with regions of recent star formation. This is born out by the observations. In particular the Cygnus feature, first presented in 1996 based on three years of COMPTEL data, is confirmed. Based on the stellar population we distinguish three prominent areas in this region, for which we separately derive fluxes, and discuss interpretations

    Radioactivities in Population Studies: 26Al and 60Fe from OB Associations

    Full text link
    The observation of the interstellar 1.809 MeV decay-line of radioactive 26Al by the imaging gamma-ray telescope COMPTEL have let to the conclusion, that massive stars and their subsequent core-collapse supernovae are the dominant sources of the interstellar 26Al abundance. Massive stars are known to affect the surrounding interstellar medium by their energetic stellar winds and by the emission of ionising radiation. We present a population synthesis model allowing the correlated investigation of the gamma-ray emission characteristics with integrated matter, kinetic energy and extreme ultra-violet radiation emission of associations of massive stars. We study the time evolution of the various observables. In addition, we discuss systematic as well as statistical uncertainties affecting the model. Beside uncertainties in the input stellar physics such as stellar rotation, mass loss rates or internal mixing modifications due to a unknown binary component may lead to significant uncertainties.Comment: 10 pages, 7 figures, to appear in Proc. "Influence of Binaries on Stellar Population Studies", eds. Vanbeveren & Van Rensbergen, Brussels, Aug. 200

    A time dependent model for the activation of COMPTEL

    Get PDF
    The structure of the CGRO satellite is irradiated by cosmic rays and trapped particles fromradiation belts. These incident particles produce radioactive nuclei in nuclear reactions with the satellite structure. Most of the radiation dose can be attributed to the passages through the South Atlantic Anomaly. The incident particle flux on the COMPTEL instrument is estimated from the event rate of a plastic scintillation detector. This event rate is modeled with a Neural Network simulation. The increase of the event rate during SAA passages is taken as a measure for the amount of induced radioactivity. A Neural Network Model is used to derive the buildup ofradioactive nuclei in the instrument over the first five years of the mission. Measurements of the internal 22Na - and 24Na-activity are used to estimate the proton flux in the SAA. The result is consistent with earlier measurements and models
    corecore