1,707 research outputs found
Cramer-Rao Lower Bound for Point Based Image Registration with Heteroscedastic Error Model for Application in Single Molecule Microscopy
The Cramer-Rao lower bound for the estimation of the affine transformation
parameters in a multivariate heteroscedastic errors-in-variables model is
derived. The model is suitable for feature-based image registration in which
both sets of control points are localized with errors whose covariance matrices
vary from point to point. With focus given to the registration of fluorescence
microscopy images, the Cramer-Rao lower bound for the estimation of a feature's
position (e.g. of a single molecule) in a registered image is also derived. In
the particular case where all covariance matrices for the localization errors
are scalar multiples of a common positive definite matrix (e.g. the identity
matrix), as can be assumed in fluorescence microscopy, then simplified
expressions for the Cramer-Rao lower bound are given. Under certain simplifying
assumptions these expressions are shown to match asymptotic distributions for a
previously presented set of estimators. Theoretical results are verified with
simulations and experimental data
The development of nurse prescribing in mental health services: Outcomes from five national surveys 2004â2019
The development of nurse prescribing in mental health services: outcomes from five national surveys 2004-19
ABSTRACT
Background:
Nurse prescribing is increasing worldwide. Reports describing long term developments after implementation are rare.
Aim:
To explore data from national surveys of nurse prescribing in Englandâs National Health Service mental health services
Methods:
Five surveys were distributed to all mental health organisations between 2004 and 2019
Results:
Response rates increased from 54% (n = 45/83) in 2004 to 79% (n = 42/53) in 2019. The estimated proportion of mental health nurses who were prescribers increased to 4.3% by 2019. Distribution between clinical practice areas did not change significantly over time, with largest numbers in community mental health teams.
The proportion of nurse prescribers actively prescribing increased from 76.4% in 2014 to 87.8% in 2019. Independent prescribing became the predominant approach, with supplementary prescribing rarely used as the sole model within organisations. The scale of implementation varied
Conclusions:
Although nurse prescribing in mental health services has grown over time, growth has slowed and is variable at local level.
Implications for nursing management:
Organisations considering the introduction or growth of nurse prescribing should note the evidenced preference for an independent prescribing model to date and consider how to avoid unwarranted variation in nurse prescriber role distribution
Higher Order Variational Integrators: a polynomial approach
We reconsider the variational derivation of symplectic partitioned
Runge-Kutta schemes. Such type of variational integrators are of great
importance since they integrate mechanical systems with high order accuracy
while preserving the structural properties of these systems, like the
symplectic form, the evolution of the momentum maps or the energy behaviour.
Also they are easily applicable to optimal control problems based on mechanical
systems as proposed in Ober-Bl\"obaum et al. [2011].
Following the same approach, we develop a family of variational integrators
to which we refer as symplectic Galerkin schemes in contrast to symplectic
partitioned Runge-Kutta. These two families of integrators are, in principle
and by construction, different one from the other. Furthermore, the symplectic
Galerkin family can as easily be applied in optimal control problems, for which
Campos et al. [2012b] is a particular case.Comment: 12 pages, 1 table, 23rd Congress on Differential Equations and
Applications, CEDYA 201
Experimental maps of DNA structure at nucleotide resolution distinguish intrinsic from protein-induced DNA deformations
Recognition of DNA by proteins depends on DNA sequence and structure. Often unanswered is whether the structure of naked DNA persists in a proteinâDNA complex, or whether protein binding changes DNA shape. While X-ray structures of proteinâDNA complexes are numerous, the structure of naked cognate DNA is seldom available experimentally. We present here an experimental and computational analysis pipeline that uses hydroxyl radical cleavage to map, at single-nucleotide resolution, DNA minor groove width, a recognition feature widely exploited by proteins. For 11 proteinâDNA complexes, we compared experimental maps of naked DNA minor groove width with minor groove width measured from X-ray co-crystal structures. Seven sites had similar minor groove widths as naked DNA and when bound to protein. For four sites, part of the DNA in the complex had the same structure as naked DNA, and part changed structure upon protein binding. We compared the experimental map with minor groove patterns of DNA predicted by two computational approaches, DNAshape and ORChID2, and found good but not perfect concordance with both. This experimental approach will be useful in mapping structures of DNA sequences for which high-resolution structural data are unavailable. This approach allows probing of protein family-dependent readout mechanisms.National Institutes of Health [R01GM106056 to R.R., T.D.T.; U54CA121852 in part to T.D.T.]; Boston University Undergraduate Research Opportunities Program [Faculty Matching Grants to D.O. and Y.J.]; USC Graduate School [Research Enhancement Fellowship and Manning Endowed Fellowship to T.P.C.]. R.R. is an Alfred P. Sloan Research Fellow. Funding for open access charge: Boston University. (R01GM106056 - National Institutes of Health; U54CA121852 - National Institutes of Health; Boston University Undergraduate Research Opportunities Program; USC Graduate School; Boston University)https://academic.oup.com/nar/article/46/5/2636/4829691?searchresult=1https://academic.oup.com/nar/article/46/5/2636/4829691?searchresult=1Published versio
Correlation length of hydrophobic polyelectrolyte solutions
The combination of two techniques (Small Angle X-ray Scattering and Atomic
Force Microscopy) has allowed us to measure in reciprocal and real space the
correlation length of salt-free aqueous solutions of highly charged
hydrophobic polyelectrolyte as a function of the polymer concentration ,
charge fraction and chain length . Contrary to the classical behaviour
of hydrophilic polyelectrolytes in the strong coupling limit, is strongly
dependent on . In particular a continuous transition has been observed from
to when decreased from 100% to
35%. We interpret this unusual behaviour as the consequence of the two features
characterising the hydrophobic polyelectrolytes: the pearl necklace
conformation of the chains and the anomalously strong reduction of the
effective charge fraction.Comment: 7 pages, 5 figures, submitted to Europhysics Letter
Convection of Plasmaspheric Plasma into the Outer Magnetosphere and Boundary Layer Region: Initial Results
We present initial results on the modeling of the circulation of plasmaspheric- origin plasma into the outer magnetosphere and low-latitude boundary layer (LLBL), using a dynamic global core plasma model (DGCPM). The DGCPM includes the influences of spatially and temporally varying convection and refilling processes to calculate the equatorial core plasma density distribution throughout the magnetosphere. We have developed an initial description of the electric and magnetic field structures in the outer magnetosphere region. The purpose of this paper is to examine both the losses of plasmaspheric-origin plasma into the magnetopause boundary layer and the convection of this plasma that remains trapped on closed magnetic field lines. For the LLBL electric and magnetic structures we have adopted here, the plasmaspheric plasma reaching the outer magnetosphere is diverted anti-sunward primarily along the dusk flank. These plasmas reach X = -15 R(sub E) in the LLBL approximately 3.2 hours after the initial enhancement of convection and continues to populate the LLBL for 12 hours as the convection electric field diminishes
The First Stars
We review recent theoretical results on the formation of the first stars in
the universe, and emphasize related open questions. In particular, we discuss
the initial conditions for Population III star formation, as given by variants
of the cold dark matter cosmology. Numerical simulations have investigated the
collapse and the fragmentation of metal-free gas, showing that the first stars
were predominantly very massive. The exact determination of the stellar masses,
and the precise form of the primordial initial mass function, is still hampered
by our limited understanding of the accretion physics and the protostellar
feedback effects. We address the importance of heavy elements in bringing about
the transition from an early star formation mode dominated by massive stars, to
the familiar mode dominated by low mass stars, at later times. We show how
complementary observations, both at high redshifts and in our local cosmic
neighborhood, can be utilized to probe the first epoch of star formation.Comment: 38 pages, 10 figures, draft version for 2004 Annual Reviews of
Astronomy and Astrophysics, high-resolution version available at
http://cfa-www.harvard.edu/~vbromm
Helium Nanodroplet Infrared Action Spectroscopy of the Proton-Bound Dimer of Hydrogen Sulfate and Formate: Examining Nuclear Quantum Effects
The proton-bound dimer of hydrogen sulfate and formate is an archetypal structure for ionic hydrogen-bonding complexes that contribute to biogenic aerosol nucleation. Of central importance for the structure and properties of this complex is the location of the bridging proton connecting the two conjugate base moieties. The potential energy surface for bridging proton translocation features two local minima, with the proton localized at either the formate or hydrogen sulfate moiety. However, electronic structure methods reveal a shallow potential energy surface governing proton translocation, with a barrier on the order of the zero-point energy. This shallow potential complicates structural assignment and necessitates a consideration of nuclear quantum effects. In this work, we probe the structure of this complex and its isotopologues, utilizing infrared (IR) action spectroscopy of ions captured in helium nanodroplets. The IR spectra indicate a structure in which a proton is shared between the hydrogen sulfate and formate moieties, HSO4-···H+···-OOCH. However, because of the nuclear quantum effects and vibrational anharmonicities associated with the shallow potential for proton translocation, the extent of proton displacement from the formate moiety remains unclear, requiring further experiments or more advanced theoretical treatments for additional insight
- âŠ