39 research outputs found

    An RNA aptamer with potent affinity for a toxic dimer of amyloid β42 has potential utility for histochemical studies of Alzheimer's disease

    Get PDF
    Oligomers of β-amyloid 42 (Aβ42), rather than fibrils, drive the pathogenesis of Alzheimer's disease (AD). In particular, toxic oligomeric species called protofibrils (PFs) have attracted significant attention. Herein, we report RNA aptamers with higher affinity toward PFs derived from a toxic Aβ42 dimer than toward fibrils produced from WT Aβ42 or from a toxic, conformationally constrained Aβ42 variant, E22P–Aβ42. We obtained these RNA aptamers by using the preincubated dimer model of E22P–Aβ42, which dimerized via a linker located at Val-40, as the target of in vitro selection. This dimer formed PFs during incubation. Several physicochemical characteristics of an identified aptamer, E22P–AbD43, suggested that preferential affinity of this aptamer toward PFs is due to its higher affinity for the toxic dimer unit (KD = 20 ± 6.0 nm) of Aβ42 than for less-toxic Aβ40 aggregates. Comparison of CD data from the full-length and random regions of E22P–AbD43 suggested that the preferential binding of E22P–AbD43 toward the dimer might be related to the formation of a G-quadruplex structure. E22P–AbD43 significantly inhibited the nucleation phase of the dimer and its associated neurotoxicity in SH-SY5Y human neuroblastoma cells. Of note, E22P–AbD43 also significantly protected against the neurotoxicity of WT Aβ42 and E22P–Aβ42. Furthermore, in an AD mouse model, E22P–AbD43 preferentially recognized diffuse aggregates, which likely originated from PFs or higher-order oligomers with curvilinear structures, compared with senile plaques formed from fibrils. We conclude that the E22P–AbD43 aptamer is a promising research and diagnostic tool for further studies of AD etiology

    Contribution of Intragenic DNA Methylation in Mouse Gametic DNA Methylomes to Establish Oocyte-Specific Heritable Marks

    Get PDF
    Genome-wide dynamic changes in DNA methylation are indispensable for germline development and genomic imprinting in mammals. Here, we report single-base resolution DNA methylome and transcriptome maps of mouse germ cells, generated using whole-genome shotgun bisulfite sequencing and cDNA sequencing (mRNA-seq). Oocyte genomes showed a significant positive correlation between mRNA transcript levels and methylation of the transcribed region. Sperm genomes had nearly complete coverage of methylation, except in the CpG-rich regions, and showed a significant negative correlation between gene expression and promoter methylation. Thus, these methylome maps revealed that oocytes and sperms are widely different in the extent and distribution of DNA methylation. Furthermore, a comparison of oocyte and sperm methylomes identified more than 1,600 CpG islands differentially methylated in oocytes and sperm (germline differentially methylated regions, gDMRs), in addition to the known imprinting control regions (ICRs). About half of these differentially methylated DNA sequences appear to be at least partially resistant to the global DNA demethylation that occurs during preimplantation development. In the absence of Dnmt3L, neither methylation of most oocyte-methylated gDMRs nor intragenic methylation was observed. There was also genome-wide hypomethylation, and partial methylation at particular retrotransposons, while maintaining global gene expression, in oocytes. Along with the identification of the many Dnmt3L-dependent gDMRs at intragenic regions, the present results suggest that oocyte methylation can be divided into 2 types: Dnmt3L-dependent methylation, which is required for maternal methylation imprinting, and Dnmt3L-independent methylation, which might be essential for endogenous retroviral DNA silencing. The present data provide entirely new perspectives on the evaluation of epigenetic markers in germline cells

    Response to correspondence on Reproducibility of CRISPR-Cas9 Methods for Generation of Conditional Mouse Alleles: A Multi-Center Evaluation

    Get PDF

    Developmental competence of oocytes grown <i>in vitro</i>: Has it peaked already?

    No full text

    Long-Term Effects of In Vitro Growth of Mouse Oocytes on Their Maturation and Development

    No full text

    The Presence of the Y-Chromosome, Not the Absence of the Second X-Chromosome, Alters the mRNA Levels Stored in the Fully Grown XY Mouse Oocyte

    Get PDF
    <div><p>The oocytes of B6.Y<sup>TIR</sup> sex-reversed female mouse mature in culture but fail to develop after fertilization because of their cytoplasmic defects. To identify the defective components, we compared the gene expression profiles between the fully-grown oocytes of B6.Y<sup>TIR</sup> (XY) females and those of their XX littermates by cDNA microarray. 173 genes were found to be higher and 485 genes were lower in XY oocytes than in XX oocytes by at least 2-fold. We compared the transcript levels of selected genes by RT-PCR in XY and XX oocytes, as well as in XO oocytes missing paternal X-chromosomes. All genes tested showed comparable transcript levels between XX and XO oocytes, indicating that mRNA accumulation is well adjusted in XO oocytes. By contrast, in addition to Y-encoded genes, many genes showed significantly different transcript levels in XY oocytes. We speculate that the presence of the Y-chromosome, rather than the absence of the second X-chromosome, caused dramatic changes in the gene expression profile in the XY fully-grown oocyte.</p> </div

    Relative transcript levels of <i>Epas1</i> in XX, XO and XY oocytes collected from ovaries at 10 and 30 days after birth.

    No full text
    <p>“Growing oocytes” were selected for their diameter between 40 and 50 µm. “Fully grown oocytes” were denuded from oocyte-cumulus complexes of antral follicles. The transcript levels were normalized against the mean of two β-actin controls. Each column indicates the mean ± SEM (n = 3). A and B above columns denote statistical differences at P<0.01 by paired students t-test.</p

    RT-PCR detection of X-encoded gene transcripts in XX, XO and XY oocytes.

    No full text
    <p>A. Agarose gel electrophoresis stained with ethidium bromide. S, 100 bp ladders. B. Relative transcript levels. In each set of experiment, the transcript levels were normalized against the mean of two β-actin controls. Each column indicates the mean ± SEM (n = 6 for <i>Xiap</i> and n = 3 for others except for <i>Usp9x</i> in XO, n = 1). a and b above columns indicate statistical differences at P<0.05 by paired students t-test.</p
    corecore