142 research outputs found

    Classification of paediatric brain tumours by diffusion weighted imaging and machine learning

    Get PDF
    To determine if apparent diffusion coefficients (ADC) can discriminate between posterior fossa brain tumours on a multicentre basis. A total of 124 paediatric patients with posterior fossa tumours (including 55 Medulloblastomas, 36 Pilocytic Astrocytomas and 26 Ependymomas) were scanned using diffusion weighted imaging across 12 different hospitals using a total of 18 different scanners. Apparent diffusion coefficient maps were produced and histogram data was extracted from tumour regions of interest. Total histograms and histogram metrics (mean, variance, skew, kurtosis and 10th, 20th and 50th quantiles) were used as data input for classifiers with accuracy determined by tenfold cross validation. Mean ADC values from the tumour regions of interest differed between tumour types, (ANOVA P < 0.001). A cut off value for mean ADC between Ependymomas and Medulloblastomas was found to be of 0.984 × 10-3 mm2 s-1 with sensitivity 80.8% and specificity 80.0%. Overall classification for the ADC histogram metrics were 85% using Naïve Bayes and 84% for Random Forest classifiers. The most commonly occurring posterior fossa paediatric brain tumours can be classified using Apparent Diffusion Coefficient histogram values to a high accuracy on a multicentre basis

    Added value of magnetic resonance spectroscopy for diagnosing childhood cerebellar tumours

    Get PDF
    1H‐magnetic resonance spectroscopy (MRS) provides noninvasive metabolite profiles with the potential to aid the diagnosis of brain tumours. Prospective studies of diagnostic accuracy and comparisons with conventional MRI are lacking. The aim of the current study was to evaluate, prospectively, the diagnostic accuracy of a previously established classifier for diagnosing the three major childhood cerebellar tumours, and to determine added value compared with standard reporting of conventional imaging. Single‐voxel MRS (1.5 T, PRESS, TE 30 ms, TR 1500 ms, spectral resolution 1 Hz/point) was acquired prospectively on 39 consecutive cerebellar tumours with histopathological diagnoses of pilocytic astrocytoma, ependymoma or medulloblastoma. Spectra were analysed with LCModel and predefined quality control criteria were applied, leaving 33 cases in the analysis. The MRS diagnostic classifier was applied to this dataset. A retrospective analysis was subsequently undertaken by three radiologists, blind to histopathological diagnosis, to determine the change in diagnostic certainty when sequentially viewing conventional imaging, MRS and a decision support tool, based on the classifier. The overall classifier accuracy, evaluated prospectively, was 91%. Incorrectly classified cases, two anaplastic ependymomas, and a rare histological variant of medulloblastoma, were not well represented in the original training set. On retrospective review of conventional MRI, MRS and the classifier result, all radiologists showed a significant increase (Wilcoxon signed rank test, p < 0.001) in their certainty of the correct diagnosis, between viewing the conventional imaging and MRS with the decision support system. It was concluded that MRS can aid the noninvasive diagnosis of posterior fossa tumours in children, and that a decision support classifier helps in MRS interpretation

    IMG-06. PREDICTING SURVIVAL FROM PERFUSION AND DIFFUSION MRI BY MACHINE LEARNING

    Get PDF
    INTRODUCTION Magnetic Resonance Imaging (MRI) is routinely used in the assessment of children’s brain tumours. Reduced diffusion and increased perfusion on MRI are commonly associated with higher grade but there is a lack of quantitative data linking these parameters to survival. Machine learning is increasingly being used to develop diagnostic tools but its use in survival analysis is rare. In this study we combine quantitative parameters from diffusion and perfusion MRI with machine learning to develop a model of survival for paediatric brain tumours. METHOD: 69 children from 4 centres (Birmingham, Liverpool, Nottingham, Newcastle) underwent MRI with diffusion and perfusion (dynamic susceptibility contrast) at diagnosis. Images were processed to form ADC, cerebral blood volume (CBV) and vessel leakage correction (K2) parameter maps. Parameter mean, standard deviation and heterogeneity measures (skewness and kurtosis) were calculated from tumour and whole brain and used in iterative Bayesian survival analysis. The features selected were used for k-means clustering and differences in survival between clusters assessed by Kaplan-Meier and Cox-regression. RESULTS Bayesian analysis revealed the 5 top features determining survival to be tumour volume, ADC kurtosis, CBV mean, K2 mean and whole brain CBV mean. K-means clustering using these features showed two distinct clusters (high- and low-risk) which bore significantly different survival characteristics (Hazard Ratio = 5.6). DISCUSSION AND CONCLUSION Diffusion and perfusion MRI can be used to aid the prediction of survival in children’s brain tumours. Tumour perfusion played a particularly important role in predicting survival despite being less routinely measured than diffusion

    Combining multi-site magnetic resonance imaging with machine learning predicts survival in pediatric brain tumors

    Get PDF
    Brain tumors represent the highest cause of mortality in the pediatric oncological population. Diagnosis is commonly performed with magnetic resonance imaging. Survival biomarkers are challenging to identify due to the relatively low numbers of individual tumor types. 69 children with biopsy-confirmed brain tumors were recruited into this study. All participants had perfusion and diffusion weighted imaging performed at diagnosis. Imaging data were processed using conventional methods, and a Bayesian survival analysis performed. Unsupervised and supervised machine learning were performed with the survival features, to determine novel sub-groups related to survival. Sub-group analysis was undertaken to understand differences in imaging features. Survival analysis showed that a combination of diffusion and perfusion imaging were able to determine two novel sub-groups of brain tumors with different survival characteristics (p < 0.01), which were subsequently classified with high accuracy (98%) by a neural network. Analysis of high-grade tumors showed a marked difference in survival (p = 0.029) between the two clusters with high risk and low risk imaging features. This study has developed a novel model of survival for pediatric brain tumors. Tumor perfusion plays a key role in determining survival and should be considered as a high priority for future imaging protocols

    Health Conditions and Their Impact among Adolescents and Young Adults with Down Syndrome

    Get PDF
    Objective: To examine the prevalence of medical conditions and use of health services among young adults with Down syndrome and describe the impact of these conditions upon their lives. Methods: Using questionnaire data collected in 2011 from parents of young adults with Down syndrome we investigated the medical conditions experienced by their children in the previous 12 months. Univariate, linear and logistic regression analyses were performed. Results: We found that in addition to the conditions commonly experienced by children with Down syndrome, including eye and vision problems (affecting 73%), ear and hearing problems (affecting 45%), cardiac (affecting 25%) and respiratory problems (affecting 36%), conditions also found to be prevalent within our young adult cohort included musculoskeletal conditions (affecting 61%), body weight (affecting 57%), skin (affecting 56%) and mental health (affecting 32%) conditions and among young women menstrual conditions (affecting 58%). Few parents reported that these conditions had no impact, with common impacts related to restrictions in opportunities to participate in employment and community leisure activities for the young people, as well as safety concerns. Conclusion: There is the need to monitor, screen and provide appropriate strategies such as through the promotion of healthy lifestyles to prevent the development of comorbidities in young people with Down syndrome and, where present, to reduce their impact

    The sustainable materials roadmap

    Get PDF
    Over the past 150 years, our ability to produce and transform engineered materials has been responsible for our current high standards of living, especially in developed economies. However, we must carefully think of the effects our addiction to creating and using materials at this fast rate will have on the future generations. The way we currently make and use materials detrimentally affects the planet Earth, creating many severe environmental problems. It affects the next generations by putting in danger the future of the economy, energy, and climate. We are at the point where something must drastically change, and it must change now. We must create more sustainable materials alternatives using natural raw materials and inspiration from nature while making sure not to deplete important resources, i.e. in competition with the food chain supply. We must use less materials, eliminate the use of toxic materials and create a circular materials economy where reuse and recycle are priorities. We must develop sustainable methods for materials recycling and encourage design for disassembly. We must look across the whole materials life cycle from raw resources till end of life and apply thorough life cycle assessments (LCAs) based on reliable and relevant data to quantify sustainability. We need to seriously start thinking of where our future materials will come from and how could we track them, given that we are confronted with resource scarcity and geographical constrains. This is particularly important for the development of new and sustainable energy technologies, key to our transition to net zero. Currently 'critical materials' are central components of sustainable energy systems because they are the best performing. A few examples include the permanent magnets based on rare earth metals (Dy, Nd, Pr) used in wind turbines, Li and Co in Li-ion batteries, Pt and Ir in fuel cells and electrolysers, Si in solar cells just to mention a few. These materials are classified as 'critical' by the European Union and Department of Energy. Except in sustainable energy, materials are also key components in packaging, construction, and textile industry along with many other industrial sectors. This roadmap authored by prominent researchers working across disciplines in the very important field of sustainable materials is intended to highlight the outstanding issues that must be addressed and provide an insight into the pathways towards solving them adopted by the sustainable materials community. In compiling this roadmap, we hope to aid the development of the wider sustainable materials research community, providing a guide for academia, industry, government, and funding agencies in this critically important and rapidly developing research space which is key to future sustainability.journal articl

    Fashioning Entitlements: A Comparative Law and Economic Analysis of the Judicial Role in Environmental Centralization in the U.S. and Europe

    Get PDF
    This paper identifies and evaluates, from an economic point of view, the role of the judiciary the steady shift of environmental regulatory authority to higher, more centralized levels of government in both the U.S. and Europe. We supply both a positive analysis of how the decisions made by judges have affected the incentives of both private and public actors to pollute the natural environment, and normative answers to the question of whether judges have acted so as to create incentives that move levels of pollution in an efficient direction, toward their optimal, cost-minimizing (or net-benefit-maximizing) levels. Highlights of the analysis include the following points: 1) Industrial-era local (state or national) legislation awarding entitlements to pollute was almost certainly inefficient due to a fundamental economic obstacle faced by those who suffer harm from the over-pollution of publicly owned natural resources: the inability to monetize and credibly commit to repay the future economic value of reducing pollution. 2) When industrial era pollution spilled across state lines in the US, the federal courts, in particular the Supreme Court, fashioned a federal common law of interstate nuisance that set up essentially the same sort of blurry, uncertain entitlements to pollute or be free of pollution that had been created by the state courts in resolving local pollution disputes. We argue that for the typical pollution problem, a legal regime of blurry interstate entitlements - with neither jurisdiction having a clear right either to pollute or be free of pollution from the other - is likely to generate efficient incentives for interjursidictional bargaining, even despite the public choice problems besetting majority-rule government. Interestingly, a very similar system of de facto entitlements arose and often stimulated interjursidictional bargaining in Europe as well as in the U.S. 3) The US federal courts have generally interpreted the federal environmental statutes in ways that give clear primacy to federal regulators. Through such judicial interpretation, state and local regulators face a continuing risk of having their decisions overridden by federal regulators. This reduces the incentives for regulatory innovation at the state and local level. Judicial authorization of federal overrides has thus weakened the economic rationale for cooperative federalism suggested by economic models of principal-agent relationships. As a result of the principle of attribution, there is less risk in Europe that (like in the US) courts would enlarge the federal purview and thereby limit the powers of the Member States. Despite this principle, the power of the European bureaucracy (that is, the European Commission) has steadily increased and led to a steady shift of environmental regulatory competencies to the European level. This shift is only sometimes normatively desirable, and yet there is little that the ECJ can or will do to slow it

    Whole-genome sequencing of chronic lymphocytic leukemia identifies subgroups with distinct biological and clinical features

    Get PDF
    The value of genome-wide over targeted driver analyses for predicting clinical outcomes of cancer patients is debated. Here, we report the whole-genome sequencing of 485 chronic lymphocytic leukemia patients enrolled in clinical trials as part of the United Kingdom’s 100,000 Genomes Project. We identify an extended catalog of recurrent coding and noncoding genetic mutations that represents a source for future studies and provide the most complete high-resolution map of structural variants, copy number changes and global genome features including telomere length, mutational signatures and genomic complexity. We demonstrate the relationship of these features with clinical outcome and show that integration of 186 distinct recurrent genomic alterations defines five genomic subgroups that associate with response to therapy, refining conventional outcome prediction. While requiring independent validation, our findings highlight the potential of whole-genome sequencing to inform future risk stratification in chronic lymphocytic leukemia

    Municipal Corporations, Homeowners, and the Benefit View of the Property Tax

    Full text link
    • 

    corecore