36 research outputs found

    Endogenous cholinergic inputs and local circuit mechanisms govern the phasic mesolimbic dopamine response to nicotine

    Get PDF
    Nicotine exerts its reinforcing action by stimulating nicotinic acetylcholine receptors (nAChRs) and boosting dopamine (DA) output from the ventral tegmental area (VTA). Recent data have led to a debate about the principal pathway of nicotine action: direct stimulation of the DAergic cells through nAChR activation, or disinhibition mediated through desensitization of nAChRs on GABAergic interneurons. We use a computational model of the VTA circuitry and nAChR function to shed light on this issue. Our model illustrates that the α4β2-containing nAChRs either on DA or GABA cells can mediate the acute effects of nicotine. We account for in vitro as well as in vivo data, and predict the conditions necessary for either direct stimulation or disinhibition to be at the origin of DA activity increases. We propose key experiments to disentangle the contribution of both mechanisms. We show that the rate of endogenous acetylcholine input crucially determines the evoked DA response for both mechanisms. Together our results delineate the mechanisms by which the VTA mediates the acute rewarding properties of nicotine and suggest an acetylcholine dependence hypothesis for nicotine reinforcement.Peer reviewe

    Erratum to: Analysis of in vitro ADCC and clinical response to trastuzumab: possible relevance of Fc\u3b3RIIIA/Fc\u3b3RIIA gene polymorphisms and HER-2 expression levels on breast cancer cell lines

    Get PDF
    BACKGROUND: Trastuzumab is a humanized monoclonal antibody (mAb) currently used for the treatment of breast cancer (BC) patients with HER-2 overexpressing tumor subtype. Previous data reported the involvement of FcγRIIIA/IIA gene polymorphisms and/or antibody-dependent cellular cytotoxicity (ADCC) in the therapeutic efficacy of trastuzumab, although results on these issues are still controversial. This study was aimed to evaluate in vitro the functional relationships among FcγRIIIA/IIA polymorphisms, ADCC intensity and HER-2 expression on tumor target cells and to correlate them with response to trastuzumab. PATIENTS AND METHODS: Twenty-five patients with HER-2 overexpressing BC, receiving trastuzumab in a neoadjuvant (NEO) or metastatic (MTS) setting, were genotyped for the FcγRIIIA 158V>F and FcγRIIA 131H>R polymorphisms by a newly developed pyrosequencing assay and by multiplex Tetra-primer-ARMS PCR, respectively. Trastuzumab-mediated ADCC of patients’ peripheral blood mononuclear cells (PBMCs) was evaluated prior to therapy and measured by (51)Chromium release using as targets three human BC cell lines showing different levels of reactivity with trastuzumab. RESULTS: We found that the FcγRIIIA 158F and/or the FcγRIIA 131R variants, commonly reported as unfavorable in BC, may actually behave as ADCC favorable genotypes, in both the NEO (P ranging from 0.009 to 0.039 and from 0.007 to 0.047, respectively) and MTS (P ranging from 0.009 to 0.032 and P = 0.034, respectively) patients. The ADCC intensity was affected by different levels of trastuzumab reactivity with BC target cells. In this context, the MCF-7 cell line, showing the lowest reactivity with trastuzumab, resulted the most suitable cell line for evaluating ADCC and response to trastuzumab. Indeed, we found a statistically significant correlation between an increased frequency of patients showing ADCC of MCF-7 and complete response to trastuzumab in the NEO setting (P = 0.006). CONCLUSIONS: Although this study was performed in a limited number of patients, it would indicate a correlation of FcγR gene polymorphisms to the ADCC extent in combination with the HER-2 expression levels on tumor target cells in BC patients. However, to confirm our findings further experimental evidences obtained from a larger cohort of BC patients are mandatory. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-015-0680-0) contains supplementary material, which is available to authorized users

    The pedunculopontine tegmental nucleus and the nucleus basalis magnocellularis: Do both have a role in sustained attention?

    Get PDF
    It is well established that nucleus basalis magnocellularis (NbM) lesions impair performance on tests of sustained attention. Previous work from this laboratory has also demonstrated that pedunculopontine tegmental nucleus (PPTg) lesioned rats make more omissions on a test of sustained attention, suggesting that it might also play a role in mediating this function. However, the results of the PPTg study were open to alternative interpretation. We aimed to resolve this by conducting a detailed analysis of the effects of damage to each brain region in the same sustained attention task used in our previous work. Rats were trained in the task before surgery and post-surgical testing examined performance in response to unpredictable light signals of 1500 ms and 4000 ms duration. Data for PPTg lesioned rats were compared to control rats, and rats with 192 IgG saporin infusions centred on the NbM. In addition to operant data, video data of rats' performance during the task were also analysed

    Mesopontine rostromedial tegmental nucleus neurons projecting to the dorsal raphe and pedunculopontine tegmental nucleus: psychostimulant-elicited Fos expression and collateralization

    Get PDF
    The mesopontine rostromedial tegmental nucleus (RMTg) is a GABAergic structure in the ventral midbrain and rostral pons that, when activated, inhibits dopaminergic neurons in the ventral tegmental area and substantia nigra compacta. Additional strong outputs from the RMTg to the pedunculopontine tegmental nucleus pars dissipata, dorsal raphe nucleus, and the pontomedullary gigantocellular reticular formation were identified by anterograde tracing. RMTg neurons projecting to the ventral tegmental area express the immediate early gene Fos upon psychostimulant administration. The present study was undertaken to determine if neurons in the RMTg that project to the additional structures listed above also express Fos upon psychostimulant administration and, if so, whether single neurons in the RMTg project to more than one of these structures. We found that about 50% of RMTg neurons exhibiting retrograde labeling after injections of retrograde tracer in the dorsal raphe or pars dissipata of the pedunculopontine tegmental nucleus express Fos after acute methamphetamine exposure. Also, we observed that a significant number of RMTg neurons project both to the ventral tegmental area and one of these structures. In contrast, methamphetamine-elicited Fos expression was not observed in RMTg neurons labeled with retrograde tracer following injections into the pontomedullary reticular formation. The findings suggest that the RMTg is an integrative modulator of multiple rostrally projecting structures

    'Omic approaches to preventing or managing metastatic breast cancer

    Get PDF
    Early detection of metastasis-prone breast cancers and characterization of residual metastatic cancers are important in efforts to improve management of breast cancer. Applications of genome-scale molecular analysis technologies are making these complementary approaches possible by revealing molecular features uniquely associated with metastatic disease. Assays that reveal these molecular features will facilitate development of anatomic, histological and blood-based strategies that may enable detection prior to metastatic spread. Knowledge of these features also will guide development of therapeutic strategies that can be applied when metastatic disease burden is low, thereby increasing the probability of a curative response
    corecore