167 research outputs found
Botswana water and surface energy balance research program. Part 1: Integrated approach and field campaign results
The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. Results of the first part of the program (Botswana 1) which ran from 1 Jan. 1988 - 31 Dec. 1990 are summarized. Botswana 1 consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components in general are described and activities performed during the surface energy modeling component including the extensive field campaign are summarized. The results of the passive microwave component are summarized. The key of the field campaign was a multilevel approach, whereby measurements by various similar sensors were made at several altitudes and resolution. Data collection was performed at two adjacent sites of contrasting surface character. The following measurements were made: micrometeorological measurements, surface temperatures, soil temperatures, soil moisture, vegetation (leaf area index and biomass), satellite data, aircraft data, atmospheric soundings, stomatal resistance, and surface emissivity
The Polyakov Loop and its Relation to Static Quark Potentials and Free Energies
It appears well accepted in the literature that the correlator of Polyakov
loops in a finite temperature system decays with the "average" free energy of
the static quark-antiquark system, and can be decomposed into singlet and
adjoint (or octet for QCD) contributions. By fixing a gauge respecting the
transfer matrix, attempts have been made to extract those contributions
separately. In this paper we point out that the "average" and "adjoint"
channels of Polyakov loop correlators are misconceptions. We show analytically
that all channels receive contributions from singlet states only, and give a
corrected definition of the singlet free energy. We verify this finding by
simulations of the 3d SU(2) pure gauge theory in the zero temperature limit,
which allows to cleanly extract the ground state exponents and the non-trivial
matrix elements. The latter account for the difference between the channels
observed in previous simulations.Comment: 14 pages, 3 figures, 1 table; note and reference adde
The pressure of strong coupling lattice QCD with heavy quarks, the hadron resonance gas model and the large N limit
In this paper we calculate the pressure of pure lattice Yang-Mills theories
and lattice QCD with heavy quarks by means of strong coupling expansions.
Dynamical fermions are introduced with a hopping parameter expansion, which
also allows for the incorporation of finite quark chemical potential. We show
that in leading orders the results are in full agreement with expectations from
the hadron resonance gas model, thus validating it with a first principles
calculation. For pure Yang-Mills theories we obtain the corresponding ideal
glueball gas, in QCD with heavy quarks our result equals that of an ideal gas
of mesons and baryons. Another finding is that the Yang-Mills pressure in the
large N limit is of order to the calculated orders, when the inverse
't Hooft coupling is used as expansion parameter. This property is expected in
the confined phase, where our calculations take place.Comment: 12 pages, 4 figure
String Breaking in Non-Abelian Gauge Theories with Fundamental Matter Fields
We present clear numerical evidence for string breaking in three-dimensional
SU(2) gauge theory with fundamental bosonic matter through a mixing analysis
between Wilson loops and meson operators representing bound states of a static
source and a dynamical scalar. The breaking scale is calculated in the
continuum limit. In units of the lightest glueball we find . The implications of our results for QCD are discussed.Comment: 4 pages, 2 figures; equations (4)-(6) corrected, numerical results
and conclusions unchange
The thermal QCD transition with two flavours of twisted mass fermions
We investigate the thermal QCD transition with two flavors of maximally
twisted mass fermions for a set of pion masses, 300 MeV \textless
\textless 500 MeV, and lattice spacings \textless 0.09 fm. We determine the
pseudo-critical temperatures and discuss their extrapolation to the chiral
limit using scaling forms for different universality classes, as well as the
scaling form for the magnetic equation of state. For all pion masses considered
we find resonable consistency with O(4) scaling plus leading corrections.
However, a true distinction between the O(4) scenario and a first order
scenario in the chiral limit requires lighter pions than are currently in use
in simulations of Wilson fermions.Comment: 11 pages, 11 figure
Centre symmetric 3d effective actions for thermal SU(N) Yang-Mills from strong coupling series
We derive three-dimensional, Z(N)-symmetric effective actions in terms of
Polyakov loops by means of strong coupling expansions, starting from thermal
SU(N) Yang-Mills theory in four dimensions on the lattice. An earlier action in
the literature, corresponding to the (spatial) strong coupling limit, is thus
extended by several higher orders, as well as by additional interaction terms.
We provide analytic mappings between the couplings of the effective theory and
the parameters of the original thermal lattice theory, which can
be systematically improved. We then investigate the deconfinement transition
for the cases SU(2) and SU(3) by means of Monte Carlo simulations of the
effective theory. Our effective models correctly reproduce second order 3d
Ising and first order phase transitions, respectively. Furthermore, we
calculate the critical couplings and find agreement with
results from simulations of the 4d theory at the few percent level for
.Comment: 27 pages, 21 figures; final version published in JHEP; attached the
corresponding Erratum (ref. JHEP 1107:014,2011, DOI 10.1007/JHEP07(2011)014)
for ease of consultatio
The deconfinement transition of finite density QCD with heavy quarks from strong coupling series
Starting from Wilson's action, we calculate strong coupling series for the
Polyakov loop susceptibility in lattice gauge theories for various small N_\tau
in the thermodynamic limit. Analysing the series with Pad\'e approximants, we
estimate critical couplings and exponents for the deconfinement phase
transition. For SU(2) pure gauge theory our results agree with those from
Monte-Carlo simulations within errors, which for the coarser N_\tau=1,2
lattices are at the percent level. For QCD we include dynamical fermions via a
hopping parameter expansion. On a N_\tau=1 lattice with N_f=1,2,3, we locate
the second order critical point where the deconfinement transition turns into a
crossover. We furthermore determine the behaviour of the critical parameters
with finite chemical potential and find the first order region to shrink with
growing \mu. Our series moreover correctly reflects the known Z(N) transition
at imaginary chemical potential.Comment: 18 pages, 7 figures, typos corrected, version published in JHE
Guidelines for Physical Activity During Pregnancy: Comparisons From Around the World
Introduction. Women attain numerous benefits from physical activity during pregnancy. However, because of physical changes that occur during pregnancy, special precautions are also needed. This review summarizes current guidelines for physical activity among pregnant women worldwide. Methods. We searched PubMed (MedLINE) for country-specific governmental and clinical guidelines on physical activity during pregnancy through the year 2012. We cross-referenced with articles referring to guidelines, with only the most recent included. An abstraction form was used to extract key details and summarize. Results. In total, 11 guidelines were identified from 9 countries (Australia, Canada, Denmark, France, Japan, Norway, Spain, United Kingdom, United States). Most guidelines supported moderate-intensity physical activity during pregnancy (10/11) and indicated specific frequency (9/11) and duration/time (9/11) recommendations. Most guidelines provided advice on initiating an exercise program during pregnancy (10/11). Six guidelines included absolute and relative contraindications to exercise. All guidelines generally ruled-out sports with risks of falls, trauma, or collisions. Six guidelines included indications for stopping exercise during pregnancy. Conclusion. This review contrasted pregnancy-related physical activity guidelines from around the world, and can help inform new guidelines as they are created or updated and facilitate the development of a worldwide guideline. © 2013 The Author(s)
Grand Challenges: Improving HIV Treatment Outcomes by Integrating Interventions for Co-Morbid Mental Illness.
In the fourth article of a five-part series providing a global perspective on integrating mental health, Sylvia Kaaya and colleagues discuss the importance of integrating mental health interventions into HIV prevention and treatment platforms. Please see later in the article for the Editors' Summary
Radial Sizing of Lipid Nanotubes Using Membrane Displacement Analysis
We report a novel method for the measurement of lipid nanotube radii. Membrane translocation is monitored between two nanotube-connected vesicles, during the expansion of a receiving vesicle, by observing a photobleached region of the nanotube. We elucidate nanotube radii, extracted from SPE vesicles, enabling quantification of membrane composition and lamellarity. Variances of nanotube radii were measured, showing a growth of 40-56 nm, upon increasing cholesterol content from 0 to 20%
- …