1,097 research outputs found
In-Plane Orbital Texture Switch at the Dirac Point in the Topological Insulator Bi2Se3
Topological insulators are novel macroscopic quantum-mechanical phase of
matter, which hold promise for realizing some of the most exotic particles in
physics as well as application towards spintronics and quantum computation. In
all the known topological insulators, strong spin-orbit coupling is critical
for the generation of the protected massless surface states. Consequently, a
complete description of the Dirac state should include both the spin and
orbital (spatial) parts of the wavefunction. For the family of materials with a
single Dirac cone, theories and experiments agree qualitatively, showing the
topological state has a chiral spin texture that changes handedness across the
Dirac point (DP), but they differ quantitatively on how the spin is polarized.
Limited existing theoretical ideas predict chiral local orbital angular
momentum on the two sides of the DP. However, there have been neither direct
measurements nor calculations identifying the global symmetry of the spatial
wavefunction. Here we present the first results from angle-resolved
photoemission experiment and first-principles calculation that both show,
counter to current predictions, the in-plane orbital wavefunctions for the
surface states of Bi2Se3 are asymmetric relative to the DP, switching from
being tangential to the k-space constant energy surfaces above DP, to being
radial to them below the DP. Because the orbital texture switch occurs exactly
at the DP this effect should be intrinsic to the topological physics,
constituting an essential yet missing aspect in the description of the
topological Dirac state. Our results also indicate that the spin texture may be
more complex than previously reported, helping to reconcile earlier conflicting
spin resolved measurements
Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapor Deposition
The strong interest in graphene has motivated the scalable production of high
quality graphene and graphene devices. Since large-scale graphene films
synthesized to date are typically polycrystalline, it is important to
characterize and control grain boundaries, generally believed to degrade
graphene quality. Here we study single-crystal graphene grains synthesized by
ambient CVD on polycrystalline Cu, and show how individual boundaries between
coalescing grains affect graphene's electronic properties. The graphene grains
show no definite epitaxial relationship with the Cu substrate, and can cross Cu
grain boundaries. The edges of these grains are found to be predominantly
parallel to zigzag directions. We show that grain boundaries give a significant
Raman "D" peak, impede electrical transport, and induce prominent weak
localization indicative of intervalley scattering in graphene. Finally, we
demonstrate an approach using pre-patterned growth seeds to control graphene
nucleation, opening a route towards scalable fabrication of single-crystal
graphene devices without grain boundaries.Comment: New version with additional data. Accepted by Nature Material
Angiostatin generating capacity and anti-tumour effects of D-penicillamine and plasminogen activators
BACKGROUND: Upregulation of endogenous angiostatin levels may constitute a novel anti-angiogenic, and therefore anti-tumor therapy. In vitro, angiostatin generation is a two-step process, starting with the conversion of plasminogen to plasmin by plasminogen activators (PAs). Next, plasmin excises angiostatin from other plasmin molecules, a process requiring a donor of a free sulfhydryl group. In previous studies, it has been demonstrated that administration of PA in combination with the free sulfhydryl donor (FSD) agents captopril or N-acetyl cysteine, resulted in angiostatin generation, and anti-angiogenic and anti-tumour activity in murine models. METHODS: In this study we have investigated the angiostatin generating capacities of several FSDs. D-penicillamine proved to be most efficient in supporting the conversion of plasminogen to angiostatin in vitro. Next, from the optimal concentrations of tPA and D-penicillamine in vitro, equivalent dosages were administered to healthy Balb/c mice to explore upregulation of circulating angiostatin levels. Finally, anti-tumor effects of treatment with tPA and D-penicillamine were determined in a human melanoma xenograft model. RESULTS: Surprisingly, we found that despite the superior angiostatin generating capacity of D-penicillamine in vitro, both in vivo angiostatin generation and anti-tumour effects of tPA/D-penicillamine treatment were impaired compared to our previous studies with tPA and captopril. CONCLUSION: Our results indicate that selecting the most appropriate free sulfhydryl donor for anti-angiogenic therapy in a (pre)clinical setting should be performed by in vivo rather than by in vitro studies. We conclude that D-penicillamine is not suitable for this type of therapy
PHANGS-JWST First Results: Mapping the 3.3 μm Polycyclic Aromatic Hydrocarbon Vibrational Band in Nearby Galaxies with NIRCam Medium Bands
We present maps of the 3.3 mu m polycyclic aromatic hydrocarbon (PAH) emission feature in NGC 628, NGC 1365, and NGC 7496 as observed with the Near-Infrared Camera imager on JWST from the PHANGS-JWST Cycle 1 Treasury project. We create maps that isolate the 3.3 mu m PAH feature in the F335M filter (F335M(PAH)) using combinations of the F300M and F360M filters for removal of starlight continuum. This continuum removal is complicated by contamination of the F360M by PAH emission and variations in the stellar spectral energy distribution slopes between 3.0 and 3.6 mu m. We modify the empirical prescription from Lai et al. to remove the starlight continuum in our highly resolved galaxies, which have a range of starlight- and PAH-dominated lines of sight. Analyzing radially binned profiles of the F335M(PAH) emission, we find that between 5% and 65% of the F335M intensity comes from the 3.3 mu m feature within the inner 0.5 r (25) of our targets. This percentage systematically varies from galaxy to galaxy and shows radial trends within the galaxies related to each galaxy's distribution of stellar mass, interstellar medium, and star formation. The 3.3 mu m emission is well correlated with the 11.3 mu m PAH feature traced with the MIRI F1130W filter, as is expected, since both features arise from C-H vibrational modes. The average F335M(PAH)/F1130W ratio agrees with the predictions of recent models by Draine et al. for PAHs with size and charge distributions shifted toward larger grains with normal or higher ionization
The Centrosomal Kinase Plk1 Localizes to the Transition Zone of Primary Cilia and Induces Phosphorylation of Nephrocystin-1
Polo-like kinase (Plk1) plays a central role in regulating the cell cycle. Plk1-mediated phosphorylation is essential for centrosome maturation, and for numerous mitotic events. Although Plk1 localizes to multiple subcellular sites, a major site of action is the centrosomes, which supports mitotic functions in control of bipolar spindle formation. In G0 or G1 untransformed cells, the centriolar core of the centrosome differentiates into the basal body of the primary cilium. Primary cilia are antenna-like sensory organelles dynamically regulated during the cell cycle. Whether Plk1 has a role in ciliary biology has never been studied. Nephrocystin-1 (NPHP1) is a ciliary protein; loss of NPHP1 in humans causes nephronophthisis (NPH), an autosomal-recessive cystic kidney disease. We here demonstrate that Plk1 colocalizes with nephrocystin-1 to the transition zone of primary cilia in epithelial cells. Plk1 co-immunoprecipitates with NPHP1, suggesting it is part of the nephrocystin protein complex. We identified a candidate Plk1 phosphorylation motif (D/E-X-S/T-φ-X-D/E) in nephrocystin-1, and demonstrated in vitro that Plk1 phosphorylates the nephrocystin N-terminus, which includes the specific PLK1 phosphorylation motif. Further, induced disassembly of primary cilia rapidly evoked Plk1 kinase activity, while small molecule inhibition of Plk1 activity or RNAi-mediated downregulation of Plk1 limited the first and second phase of ciliary disassembly. These data identify Plk1 as a novel transition zone signaling protein, suggest a function of Plk1 in cilia dynamics, and link Plk1 to the pathogenesis of NPH and potentially other cystic kidney diseases
PHANGS-JWST First Results: Interstellar Medium Structure on the Turbulent Jeans Scale in Four Disk Galaxies Observed by JWST and the Atacama Large Millimeter/submillimeter Array
JWST/Mid-Infrared Instrument imaging of the nearby galaxies IC 5332, NGC 628, NGC 1365, and NGC 7496 from PHANGS reveals a richness of gas structures that in each case form a quasi-regular network of interconnected filaments, shells, and voids. We examine whether this multiscale network of structure is consistent with the fragmentation of the gas disk through gravitational instability. We use FilFinder to detect the web of filamentary features in each galaxy and determine their characteristic radial and azimuthal spacings. These spacings are then compared to estimates of the most Toomre-unstable length (a few kiloparsecs), the turbulent Jeans length (a few hundred parsecs), and the disk scale height (tens of parsecs) reconstructed using PHANGS-Atacama Large Millimeter/submillimeter Array observations of the molecular gas as a dynamical tracer. Our analysis of the four galaxies targeted in this work indicates that Jeans-scale structure is pervasive. Future work will be essential for determining how the structure observed in gas disks impacts not only the rate and location of star formation but also how stellar feedback interacts positively or negatively with the surrounding multiphase gas reservoir. © 2023
PHANGS-JWST First Results: Spurring on Star Formation: JWST Reveals Localized Star Formation in a Spiral Arm Spur of NGC 628
We combine JWST observations with Atacama Large Millimeter/submillimeter Array CO and Very Large Telescope MUSE Hα data to examine off-spiral arm star formation in the face-on, grand-design spiral galaxy NGC 628. We focus on the northern spiral arm, around a galactocentric radius of 3-4 kpc, and study two spurs. These form an interesting contrast, as one is CO-rich and one CO-poor, and they have a maximum azimuthal offset in MIRI 21 μm and MUSE Hα of around 40° (CO-rich) and 55° (CO-poor) from the spiral arm. The star formation rate is higher in the regions of the spurs near spiral arms, but the star formation efficiency appears relatively constant. Given the spiral pattern speed and rotation curve of this galaxy and assuming material exiting the arms undergoes purely circular motion, these offsets would be reached in 100-150 Myr, significantly longer than the 21 μm and Hα star formation timescales (both < 10 Myr). The invariance of the star formation efficiency in the spurs versus the spiral arms indicates massive star formation is not only triggered in spiral arms, and cannot simply occur in the arms and then drift away from the wave pattern. These early JWST results show that in situ star formation likely occurs in the spurs, and that the observed young stars are not simply the “leftovers” of stellar birth in the spiral arms. The excellent physical resolution and sensitivity that JWST can attain in nearby galaxies will well resolve individual star-forming regions and help us to better understand the earliest phases of star formation
PHANGS-JWST first results: rapid evolution of star formation in the central molecular gas ring of NGC 1365
Large-scale bars can fuel galaxy centers with molecular gas, often leading to the development of dense ringlike structures where intense star formation occurs, forming a very different environment compared to galactic disks. We pair ∼0farcs3 (30 pc) resolution new JWST/MIRI imaging with archival ALMA CO(2–1) mapping of the central ∼5 kpc of the nearby barred spiral galaxy NGC 1365 to investigate the physical mechanisms responsible for this extreme star formation. The molecular gas morphology is resolved into two well-known bright bar lanes that surround a smooth dynamically cold gas disk (Rgal ∼ 475 pc) reminiscent of non-star-forming disks in early-type galaxies and likely fed by gas inflow triggered by stellar feedback in the lanes. The lanes host a large number of JWST-identified massive young star clusters. We find some evidence for temporal star formation evolution along the ring. The complex kinematics in the gas lanes reveal strong streaming motions and may be consistent with convergence of gas streamlines expected there. Indeed, the extreme line widths are found to be the result of inter-"cloud" motion between gas peaks; ScousePy decomposition reveals multiple components with line widths of 〈σCO,scouse〉 ≈ 19 km s−1 and surface densities of [OMISSIS], similar to the properties observed throughout the rest of the central molecular gas structure. Tailored hydrodynamical simulations exhibit many of the observed properties and imply that the observed structures are transient and highly time-variable. From our study of NGC 1365, we conclude that it is predominantly the high gas inflow triggered by the bar that is setting the star formation in its CMZ
PHANGS-JWST first results: stellar-feedback-driven excitation and dissociation of molecular gas in the Starburst Ring of NGC 1365?
We compare embedded young massive star clusters (YMCs) to (sub-)millimeter line observations tracing the excitation and dissociation of molecular gas in the starburst ring of NGC 1365. This galaxy hosts one of the strongest nuclear starbursts and richest populations of YMCs within 20 Mpc. Here we combine near-/mid-IR PHANGS–JWST imaging with new Atacama Large Millimeter/submillimeter Array multi-J CO (1–0, 2–1 and 4–3) and [C i] (1–0) mapping, which we use to trace CO excitation via R42 = ICO(4−3)/ICO(2−1) and R21 = ICO(2−1)/ICO(1−0) and dissociation via RCICO = I[CI](1−0)/ICO(2−1) at 330 pc resolution. We find that the gas flowing into the starburst ring from northeast to southwest appears strongly affected by stellar feedback, showing decreased excitation (lower R42) and increased signatures of dissociation (higher RCICO) in the downstream regions. There, radiative-transfer modeling suggests that the molecular gas density decreases and temperature and [CI/CO] abundance ratio increase. We compare R42 and RCICO with local conditions across the regions and find that both correlate with near-IR 2 μm emission tracing the YMCs and with both polycyclic aromatic hydrocarbon (11.3 μm) and dust continuum (21 μm) emission. In general, RCICO exhibits ∼0.1 dex tighter correlations than R42, suggesting C i to be a more sensitive tracer of changing physical conditions in the NGC 1365 starburst than CO (4–3). Our results are consistent with a scenario where gas flows into the two arm regions along the bar, becomes condensed/shocked, forms YMCs, and then these YMCs heat and dissociate the gas
PHANGS-JWST First Results: Dust-embedded Star Clusters in NGC 7496 Selected via 3.3 μm PAH Emission
The earliest stages of star formation occur enshrouded in dust and are not observable in the optical. Here we leverage the extraordinary new high-resolution infrared imaging from JWST to begin the study of dust-embedded star clusters in nearby galaxies throughout the Local Volume. We present a technique for identifying dust-embedded clusters in NGC 7496 (18.7 Mpc), the first galaxy to be observed by the PHANGS-JWST Cycle 1 Treasury Survey. We select sources that have strong 3.3 mu m PAH emission based on a F300M - F335M color excess and identify 67 candidate embedded clusters. Only eight of these are found in the PHANGS-HST optically selected cluster catalog, and all are young (six have SED fit ages of similar to 1 Myr). We find that this sample of embedded cluster candidates may significantly increase the census of young clusters in NGC 7496 from the PHANGS-HST catalog; the number of clusters younger than similar to 2 Myr could be increased by a factor of 2. Candidates are preferentially located in dust lanes and are coincident with the peaks in the PHANGS-ALMA CO (2-1) maps. We take a first look at concentration indices, luminosity functions, SEDs spanning from 2700 angstrom to 21 mu m, and stellar masses (estimated to be between similar to 10(4) and 10(5) M (circle dot)). The methods tested here provide a basis for future work to derive accurate constraints on the physical properties of embedded clusters, characterize the completeness of cluster samples, and expand analysis to all 19 galaxies in the PHANGS-JWST sample, which will enable basic unsolved problems in star formation and cluster evolution to be addressed
- …