55 research outputs found

    CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The CD44 cell adhesion molecule is aberrantly expressed in many breast tumors and has been implicated in the metastatic process as well as in the putative cancer stem cell (CSC) compartment. We aimed to investigate potential associations between alternatively spliced isoforms of CD44 and CSCs as well as to various breast cancer biomarkers and molecular subtypes.</p> <p>Methods</p> <p>We used q-RT-PCR and exon-exon spanning assays to analyze the expression of four alternatively spliced CD44 isoforms as well as the total expression of CD44 in 187 breast tumors and 13 cell lines. ALDH1 protein expression was determined by IHC on TMA.</p> <p>Results</p> <p>Breast cancer cell lines showed a heterogeneous expression pattern of the CD44 isoforms, which shifted considerably when cells were grown as mammospheres. Tumors characterized as positive for the CD44<sup>+</sup>/CD24<it><sup>- </sup></it>phenotype by immunohistochemistry were associated to all isoforms except the CD44 standard (CD44S) isoform, which lacks all variant exons. Conversely, tumors with strong expression of the CSC marker ALDH1 had elevated expression of CD44S. A high expression of the CD44v2-v10 isoform, which retain all variant exons, was correlated to positive steroid receptor status, low proliferation and luminal A subtype. The CD44v3-v10 isoform showed similar correlations, while high expression of CD44v8-v10 was correlated to positive EGFR, negative/low HER2 status and basal-like subtype. High expression of CD44S was associated with strong HER2 staining and also a subgroup of basal-like tumors. Unsupervised hierarchical cluster analysis of CD44 isoform expression data divided tumors into four main clusters, which showed significant correlations to molecular subtypes and differences in 10-year overall survival.</p> <p>Conclusions</p> <p>We demonstrate that individual CD44 isoforms can be associated to different breast cancer subtypes and clinical markers such as HER2, ER and PgR, which suggests involvement of CD44 splice variants in specific oncogenic signaling pathways. Efforts to link CD44 to CSCs and tumor progression should consider the expression of various CD44 isoforms.</p

    Diffuse duodenal nodular lymphoid hyperplasia: a large cohort of patients etiologically related to Helicobacter pylori infection

    Get PDF
    Abstract Background Nodular lymphoid hyperplasia of gastrointestinal tract is a rare disorder, often associated with immunodeficiency syndromes. There are no published reports of its association with Helicobacter pylori infection. Methods From March 2005 till February 2010, we prospectively followed all patients with diffuse duodenal nodular lymphoid hyperplasia (DDNLH). Patients underwent esophagogastroduodenoscopy with targeted biopsies, colonoscopy, and small bowel video capsule endoscopy. Duodenal nodular lesions were graded from 0 to 4 based on their size and density. Patients were screened for celiac sprue (IgA endomysial antibody), immunoglobulin abnormalities (immunoglobulin levels & serum protein electrophoresis), small intestine bacterial overgrowth (lactulose hydrogen breath test), and Helicobacter pylori infection (rapid urease test, and histological examination of gastric biopsies). Patients infected with Helicobacter pylori received sequential antibiotic therapy and eradication of infection was evaluated by 14C urea breath test. Follow up duodenoscopies with biopsies were performed to ascertain resolution of nodular lesions. Results Forty patients (Males 23, females 17; mean age ± 1SD 35.6 ± 14.6 years) with DDNLH were studied. Patients presented with epigastric pain, vomiting, and weight loss. Esophagogastroduodenoscopy showed diffuse nodular lesions (size varying from 2 to 5 mm or more) of varying grades (mean score ± 1SD 2.70 ± 0.84) involving postbulbar duodenum. Video capsule endoscopies revealed nodular disease exclusively limited to duodenum. None of the patients had immunoglobulin deficiency or small intestine bacterial overgrowth or positive IgA endomysial antibodies. All patients were infected with Helicobacter pylori infection. Sequential antibiotic therapy eradicated Helicobacter pylori infection in 26 patients. Follow up duodenoscopies in these patients showed significant reduction of duodenal nodular lesions score (2.69 ± 0.79 to 1.50 ± 1.10; p Helicobacter pylori infection showed no significant reduction of nodular lesions score (2.71 ± 0.96 to 2.64 ± 1.15; p = 0.58). Nodules partially regressed in score in 2 patients, showed no interval change in 10 patients and progressed in 2 patients. Conclusions We report on a large cohort of patients with DDNLH, etiologically related to Helicobacter pylori infection.</p

    The genetic epidemiology of joint shape and the development of osteoarthritis

    Get PDF
    Congruent, low-friction relative movement between the articulating elements of a synovial joint is an essential pre-requisite for sustained, efficient, function. Where disorders of joint formation or maintenance exist, mechanical overloading and osteoarthritis (OA) follow. The heritable component of OA accounts for ~ 50% of susceptible risk. Although almost 100 genetic risk loci for OA have now been identified, and the epidemiological relationship between joint development, joint shape and osteoarthritis is well established, we still have only a limited understanding of the contribution that genetic variation makes to joint shape and how this modulates OA risk. In this article, a brief overview of synovial joint development and its genetic regulation is followed by a review of current knowledge on the genetic epidemiology of established joint shape disorders and common shape variation. A summary of current genetic epidemiology of OA is also given, together with current evidence on the genetic overlap between shape variation and OA. Finally, the established genetic risk loci for both joint shape and osteoarthritis are discussed

    Maternal and fetal genetic contribution to gestational weight gain

    Get PDF
    BACKGROUND: Clinical recommendations to limit gestational weight gain (GWG) imply high GWG is causally related to adverse outcomes in mother or offspring, but GWG is the sum of several inter-related complex phenotypes (maternal fat deposition and vascular expansion, placenta, amniotic fluid and fetal growth). Understanding the genetic contribution to GWG could help clarify the potential effect of its different components on maternal and offspring health. Here we explore the genetic contribution to total, early and late GWG.PARTICIPANTS AND METHODS: A genome-wide association study was used to identify maternal and fetal variants contributing to GWG in up to 10 543 mothers and 16 317 offspring of European origin, with replication in 10 660 mothers and 7561 offspring. Additional analyses determined the proportion of variability in GWG from maternal and fetal common genetic variants and the overlap of established genome-wide significant variants for phenotypes relevant to GWG (for example, maternal body mass index (BMI) and glucose, birth weight).RESULTS: Approximately 20% of the variability in GWG was tagged by common maternal genetic variants, and the fetal genome made a surprisingly minor contribution to explain variation in GWG. Variants near the pregnancy-specific beta-1 glycoprotein 5 (135G5) gene reached genome-wide significance (P =1.71 x 10(-8)) for total GWG in the offspring genome, but did not replicate. Some established variants associated with increased BMI, fasting glucose and type 2 diabetes were associated with lower early, and higher later GWG. Maternal variants related to higher systolic blood pressure were related to lower late GWG. Established maternal and fetal birth weight variants were largely unrelated to GWG.CONCLUSIONS: We found a modest contribution of maternal common variants to GWG and some overlap of maternal BMI, glucose and type 2 diabetes variants with GWG. These findings suggest that associations between GWG and later offspring/maternal outcomes may be due to the relationship of maternal BMI and diabetes with GWG

    A saturated map of common genetic variants associated with human height

    Get PDF
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes(1). Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel(2)) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.A large genome-wide association study of more than 5 million individuals reveals that 12,111 single-nucleotide polymorphisms account for nearly all the heritability of height attributable to common genetic variants

    A saturated map of common genetic variants associated with human height.

    Get PDF
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries
    corecore