246 research outputs found

    BCG directly induces cell cycle arrest in human transitional carcinoma cell lines as a consequence of integrin cross-linking

    Get PDF
    BACKGROUND: Current models of the mechanism by which intravesical BCG induces an anti-tumor effect in urothelial carcinoma propose a secondary cellular immune response as principally responsible. Our group has demonstrated that BCG mediated cross-linking of α5 [Image: see text] 1 integrin receptors present on the tumor surface elicits a complex biologic response involving AP1 and NF-κB signaling as well as the transactivation of immediate early genes. This study evaluated the direct biologic effect of cross-linking α5β1 integrin on cell cycle progression and apoptosis in two human urothelial carcinoma cell lines. METHODS: Two independent assays (MTT and Colony forming ability) were employed to measure the effect of α5β1 cross-linking (antibody mediated or BCG) on cellular proliferation. Flow cytometry was employed to measure effect of BCG and α5β1 antibody mediated cross-linking on cell cycle progression. Apoptosis was measured using assays for both DNA laddering and Caspase 3 activation. RESULTS: Results demonstrate that integrin cross-linking by BCG, or antibody mediated crosslinking of α5β1 resulted in a decrease in proliferating cell number. BCG treatment or α5β1 cross-linking increased the percentage of cells in G0/G1, in both 253J and T24 cell lines. Peptide mediated blockade of integrin binding site using RGDS reversed the effect BCG on both proliferation and cell cycle arrest. Apoptosis in response to BCG was not identified by either DNA laddering or Caspase 3 activation. CONCLUSION: These findings show that BCG exerts a direct cytostatic effect on human urothelial carcinoma cell lines. Cell cycle arrest at the G1/S interface is a mechanism by which BCG inhibits cellular proliferation. This effect is duplicated by antibody mediated cross-linking of α5β1 and likely occurs as a consequence of crosslink-initiated signal transduction to cell cycle regulatory genes

    Exploiting structural and topological information to improve prediction of RNA-protein binding sites

    Get PDF
    The breast and ovarian cancer susceptibility gene BRCA1 encodes a multifunctional tumor suppressor protein BRCA1, which is involved in regulating cellular processes such as cell cycle, transcription, DNA repair, DNA damage response and chromatin remodeling. BRCA1 protein, located primarily in cell nuclei, interacts with multiple proteins and various DNA targets. It has been demonstrated that BRCA1 protein binds to damaged DNA and plays a role in the transcriptional regulation of downstream target genes. As a key protein in the repair of DNA double-strand breaks, the BRCA1-DNA binding properties, however, have not been reported in detail

    Circadian Control of Dendrite Morphology in the Visual System of Drosophila melanogaster

    Get PDF
    In the first optic neuropil (lamina) of the fly's visual system, monopolar cells L1 and L2 and glia show circadian rhythms in morphological plasticity. They change their size and shape during the day and night. The most pronounced changes have been detected in circadian size of the L2 axons. Looking for a functional significance of the circadian plasticity observed in axons, we examined the morphological plasticity of the L2 dendrites. They extend from axons and harbor postsynaptic sites of tetrad synaptic contacts from the photoreceptor terminals.The plasticity of L2 dendrites was evaluated by measuring an outline of the L2 dendritic trees. These were from confocal images of cross sections of L2 cells labeled with GFP. They were in wild-type and clock mutant flies held under different light conditions and sacrified at different time points. We found that the L2 dendrites are longest at the beginning of the day in both males and females. This rhythm observed under a day/night regime (LD) was maintained in constant darkness (DD) but not in continuous light (LL). This rhythm was not present in the arrhythmic per(01) mutant in LD or in DD. In the clock photoreceptor cry(b) mutant the rhythm was maintained but its pattern was different than that observed in wild-type flies.The results obtained showed that the L2 dendrites exhibit circadian structural plasticity. Their morphology is controlled by the per gene-dependent circadian clock. The L2 dendrites are longest at the beginning of the day when the daytime tetrad presynaptic sites are most numerous and L2 axons are swollen. The presence of the rhythm, but with a different pattern in cry(b) mutants in LD and DD indicates a new role of cry in the visual system. The new role is in maintaining the circadian pattern of changes of the L2 dendrite length and shape

    Evaluation of Cellular Phenotypes Implicated in Immunopathogenesis and Monitoring Immune Reconstitution Inflammatory Syndrome in HIV/Leprosy Cases

    Get PDF
    BACKGROUND: It is now evident that HAART-associated immunological improvement often leads to a variety of new clinical manifestations, collectively termed immune reconstitution inflammatory syndrome, or IRIS. This phenomenon has already been described in cases of HIV coinfection with Mycobacterium leprae, most of them belonging to the tuberculoid spectrum of leprosy disease, as observed in leprosy reversal reaction (RR). However, the events related to the pathogenesis of this association need to be clarified. This study investigated the immunological profile of HIV/leprosy patients, with special attention to the cellular activation status, to better understand the mechanisms related to IRIS/RR immunopathogenesis, identifying any potential biomarkers for IRIS/RR intercurrence. METHODS/PRINCIPAL FINDINGS: Eighty-five individuals were assessed in this study: HIV/leprosy and HIV-monoinfected patients, grouped according to HIV-viral load levels, leprosy patients without HIV coinfection, and healthy controls. Phenotypes were evaluated by flow cytometry for T cell subsets and immune differentiation/activation markers. As expected, absolute counts of the CD4+ and CD8+ T cells from the HIV-infected individuals changed in relation to those of the leprosy patients and controls. However, there were no significant differences among the groups, whether in the expression of cellular differentiation phenotypes or cellular activation, as reflected by the expression of CD38 and HLA-DR. Six HIV/leprosy patients identified as IRIS/RR were analyzed during IRIS/RR episodes and after prednisone treatment. These patients presented high cellular activation levels regarding the expression of CD38 in CD8+ cells T during IRIS/RR (median: 77,15%), dropping significantly (p<0,05) during post-IRIS/RR moments (median: 29,7%). Furthermore, an increase of cellular activation seems to occur prior to IRIS/RR. CONCLUSION/SIGNIFICANCE: These data suggest CD38 expression in CD8+ T cells interesting tool identifying HIV/leprosy individuals at risk for IRIS/RR. So, a comparative investigation to leprosy patients at RR should be conducted

    An Overview of Three Promising Mechanical, Optical, and Biochemical Engineering Approaches to Improve Selective Photothermolysis of Refractory Port Wine Stains

    Get PDF
    During the last three decades, several laser systems, ancillary technologies, and treatment modalities have been developed for the treatment of port wine stains (PWSs). However, approximately half of the PWS patient population responds suboptimally to laser treatment. Consequently, novel treatment modalities and therapeutic techniques/strategies are required to improve PWS treatment efficacy. This overview therefore focuses on three distinct experimental approaches for the optimization of PWS laser treatment. The approaches are addressed from the perspective of mechanical engineering (the use of local hypobaric pressure to induce vasodilation in the laser-irradiated dermal microcirculation), optical engineering (laser-speckle imaging of post-treatment flow in laser-treated PWS skin), and biochemical engineering (light- and heat-activatable liposomal drug delivery systems to enhance the extent of post-irradiation vascular occlusion)

    Interactions of Cathinone NPS with Human Transporters and Receptors in Transfected Cells

    Get PDF
    Pharmacological assays carried out in transfected cells have been very useful for describing the mechanism of action of cathinone new psychoactive substances (NPS). These in vitro characterizations provide fast and reliable information on psychoactive substances soon after they emerge for recreational use. Well-investigated comparator compounds, such as methamphetamine, 3,4-methylenedioxymethamphetamine, cocaine, and lysergic acid diethylamide, should always be included in the characterization to enhance the translation of the in vitro data into clinically useful information. We classified cathinone NPS according to their pharmacology at monoamine transporters and receptors. Cathinone NPS are monoamine uptake inhibitors and most induce transporter-mediated monoamine efflux with weak to no activity at pre- or postsynaptic receptors. Cathinones with a nitrogen-containing pyrrolidine ring emerged as NPS that are extremely potent transporter inhibitors but not monoamine releasers. Cathinones exhibit clinically relevant differences in relative potencies at serotonin vs. dopamine transporters. Additionally, cathinone NPS have more dopaminergic vs. serotonergic properties compared with their non-β-keto amphetamine analogs, suggesting more stimulant and reinforcing properties. In conclusion, in vitro pharmacological assays in heterologous expression systems help to predict the psychoactive and toxicological effects of NPS

    Holomorphic Blocks in Three Dimensions

    Get PDF
    We decompose sphere partition functions and indices of three-dimensional N=2 gauge theories into a sum of products involving a universal set of "holomorphic blocks". The blocks count BPS states and are in one-to-one correspondence with the theory's massive vacua. We also propose a new, effective technique for calculating the holomorphic blocks, inspired by a reduction to supersymmetric quantum mechanics. The blocks turn out to possess a wealth of surprising properties, such as a Stokes phenomenon that integrates nicely with actions of three-dimensional mirror symmetry. The blocks also have interesting dual interpretations. For theories arising from the compactification of the six-dimensional (2,0) theory on a three-manifold M, the blocks belong to a basis of wavefunctions in analytically continued Chern-Simons theory on M. For theories engineered on branes in Calabi-Yau geometries, the blocks offer a non-perturbative perspective on open topological string partition functions.Comment: 124 pages, 21 figures. v3: Typos correcte
    corecore