421 research outputs found

    Neutrino masses from universal Fermion mixing

    Get PDF
    If three right-handed neutrinos are added to the Standard Model, then, for the three known generations, there are six quarks and six leptons. It is then natural to assume that the symmetry considerations that have been applied to the quark matrices are also valid for the lepton mass matrices. Under this assumption, the solar and atmospheric neutrino data can be used to determine the individual neutrino masses. Using the \chi^2 fit, it is found that the mass of the lightest neutrino is (2-5)\times10^{-3} eV, that of the next heavier neutrino is (10-13)\times10^{-3} eV, while the mass of the heaviest neutrino is (52-54)\times10^{-3} eV.Comment: 27 pages, LaTeX, including several figure

    Trilinear Higgs couplings in the two Higgs doublet model with CP violation

    Full text link
    We carry out a detailed analysis of the general two Higgs doublet model with CP violation. We describe two different parametrizations of this model, and then study the Higgs boson masses and the trilinear Higgs couplings for these two parametrizations. Within a rather general model, we find that the trilinear Higgs couplings have a significant dependence on the details of the model, even when the lightest Higgs boson mass is taken to be a fixed parameter. We include radiative corrections in the one-loop effective potential approximation in our analysis of the Higgs boson masses and the Higgs trilinear couplings. The one-loop corrections to the trilinear couplings of the two Higgs doublet model also depend significantly on the details of the model, and can be rather large. We study quantitatively the trilinear Higgs couplings, and show that these couplings are typically several times larger than the corresponding Standard Model trilinear Higgs coupling in some regions of the parameter space. We also briefly discuss the decoupling limit of the two Higgs doublet model.Comment: 23 pages, 15 figures. v2: References added, version to appear in PR

    Identification of extra neutral gauge bosons at the International Linear Collider

    Full text link
    Heavy neutral gauge bosons, Z's, are predicted by many theoretical schemes of physics beyond the Standard Model, and intensive searches for their signatures will be performed at present and future high energy colliders. It is quite possible that Z's are heavy enough to lie beyond the discovery reach expected at the CERN Large Hadron Collider LHC, in which case only indirect signatures of Z' exchanges may occur at future colliders, through deviations of the measured cross sections from the Standard Model predictions. We here discuss in this context the foreseeable sensitivity to Z's of fermion-pair production cross sections at an e^+e^- linear collider, especially as regards the potential of distinguishing different Z' models once such deviations are observed. Specifically, we assess the discovery and identification reaches on Z' gauge bosons pertinent to the E_6, LR, ALR and SSM classes of models, that should be attained at the planned International Linear Collider (ILC). With the high experimental accuracies expected at the ILC, the discovery and the identification reaches on the Z' models under consideration could be increased substantially. In particular, the identification among the different models could be achieved for values of Z' masses in the discovery (but beyond the identification) reach of the LHC. An important role in enhancing such reaches is played by the electron (and possibly the positron) longitudinally polarized beams. Also, although the purely leptonic processes are experimentally cleaner, the measurements of c- and b-quark pair production cross sections are found to carry important, and complementary, information on these searches.Comment: 21 page

    Constraining the Two-Higgs-Doublet-Model parameter space

    Full text link
    We confront the Two-Higgs-Doublet Model with a variety of experimental constraints as well as theoretical consistency conditions. The most constraining data are the \bar B\to X_s\gamma decay rate (at low values of M_{H^\pm}), and \Delta\rho (at both low and high M_{H^\pm}). We also take into account the B\bar B oscillation rate and R_b, or the width \Gamma(Z\to b\bar b) (both of which restrict the model at low values of \tan\beta), and the B^-\to\tau\nu_\tau decay rate, which restricts the model at high \tan\beta and low M_{H^\pm}. Furthermore, the LEP2 non-discovery of a light, neutral Higgs boson is considered, as well as the muon anomalous magnetic moment. Since perturbative unitarity excludes high values of \tan\beta, the model turns out to be very constrained. We outline the remaining allowed regions in the \tan\beta-M_{H^\pm} plane for different values of the masses of the two lightest neutral Higgs bosons, and describe some of their properties.Comment: 17 pages, 17 figure

    Taming the Scalar Mass Problem with a Singlet Higgs Boson

    Full text link
    We investigate the fine-tuning problem in the Standard Model and show that Higgs boson and top quark masses consistent with current experimental bounds cannot be obtained unless one extends the particle spectrum. A minimal extension which achieves this involves addition of a singlet real scalar and one generation of vectorlike fermions. We show that this leads to a phenomenologically viable prediction for the mass of the Standard Model Higgs boson.Comment: (LaTeX file), 13 pages, preprint no. SINP-TNP/94-1

    Sensitivity of mangrove range limits to climate variability

    Get PDF
    Aim: Correlative distribution models have been used to identify potential climatic controls of mangrove range limits, but there is still uncertainty about the relative importance of these factors across different regions. To provide insights into the strength of climatic control of different mangrove range limits, we tested whether temporal variability in mangrove abundance increases near range limits and whether this variability is correlated with climatic factors thought to control large scale mangrove distributions. Location: North and South America. Time period: 1984–2011. Major taxa studied: Avicennia germinans, Avicennia schuaeriana, Rhizophora mangle, Laguncularia racemosa. Methods: We characterized temporal variability in the enhanced vegetation index (EVI) at mangrove range limits using Landsat satellite imagery collected between 1984–2011. We characterized greening trends at each range limit, examined variability in EVI along latitudinal gradients near each range limit, and assessed correlations between changes in EVI and temperature and precipitation. Results: Spatial variability in mean EVI was generally correlated with temperature and precipitation, but the relationships were region specific. Greening trends were most pronounced at range limits in eastern North America. In these regions variability in EVI increased toward the range limit and was sensitive to climatic factors. In contrast, EVI at range limits on the Pacific coast of North America and both coasts of South America was relatively stable and less sensitive to climatic variability. Main conclusions: Our results suggest that range limits in eastern North America are strongly controlled by climate factors. Mangrove expansion in response to future warming is expected to be rapid in regions that are highly sensitive to climate variability (e.g. eastern North America), but the response in other range limits (e.g. South America) is likely to be more complex and modulated by additional factors such as dispersal limitation, habitat constraints, and/or changing climatic means rather than just extremes

    On the phenomenology of a Z' coupling only to third-family fermions

    Get PDF
    The phenomenology of an additional U(1) neutral gauge boson Z' coupled to the third family of fermions is discussed. One might expect such a particle to contribute to processes where taus, b and t quarks are produced. Precision data from LEP1 put severe constraints on the mixing and heavy-boson mass. We find that the effects of such a particle could not be observed at hadronic colliders, be it at the Tevatron or the LHC, because of the QCD background. At LEP2 and future e^+e^- linear colliders, one could instead hope to observe such effects, in particular for b\bar b final states.Comment: 36 pages, LaTeX, including 12 figure

    Determinants of transnational social capital: opportunity–investment–ability perspective

    Get PDF
    This study suggests that it is critical for executives todeveloptransnational social capital(TSC), or professionalrelationships and ties that span national borders. We firstprovide a conceptual framework and careful operationaliza-tion of TSC that differentiates between bonding and bridg-ing forms of social capital. We then examine the effect ofthree key determinants—opportunity, investment and abil-ity—on the TSC of executives. Using detailed survey dataon 227 executives, our analysis suggests that internationalexperience, investment in communicating with cross-borderties and cosmopolitan ability have direct effects on overallTSC. We further demonstrate that international experienceand cosmopolitan ability affect both bridging and bonding,but that investment in cross-border communication onlyaffects bridging social capital. The study proposes thatsocial capital is becoming more and more transnational asconnections, interactions and transactions increasingly spannational borders, which has implications for internationalbusiness and human resource management. Given our find-ings, it would make sense for global organizations to paymore attention to these, if they would like their membersto develop this resource. We point out benefits to organiza-tions and individuals

    Self-interactions of the lightest MSSM Higgs boson in the large pseudoscalar-mass limit

    Get PDF
    We investigate the decoupling properties of the Higgs-sector-induced one-loop corrections in the lightest Higgs-boson self-couplings, in the framework of the Minimal Supersymmetric Standard Model (MSSM). The renormalized n-point vertex functions with external Higgs particles in the MSSM and in the SM are derived to the one-loop level and compared in the MA >> MZ limit. The computation has been done in a general R_{xi} gauge and the on-shell renormalization scheme is chosen. By a comparison of the renormalized lightest Higgs-boson h^0 vertex functions with respect to the corresponding SM ones, we find that the differences between the predictions of both models are summarized in the lightest Higgs-boson mass correction Delta Mh. Consequently, the radiative corrections are absorbed in the Higgs-boson mass, and the trilinear and quartic h^0 self-couplings acquire the same structure as the couplings of the SM Higgs-boson. Therefore, decoupling of the heavy MSSM Higgs bosons occurs and the MSSM h^0 self-interactions converge to the SM ones in the MA >> MZ limit.Comment: LaTeX, 26 pages, 1 figure. Sections 4 and 5 summarized in one section. Some references added. Published version in Phys. Rev.

    The Triple Higgs Boson Self-Coupling at Future Linear e+e- Colliders Energies: ILC and CLIC

    Full text link
    We analyzed the triple Higgs boson self-coupling at future e+e−e^{+}e^{-} colliders energies, with the reactions e+e−→bbˉHH,ttˉHHe^{+}e^{-}\to b \bar b HH, t \bar t HH. We evaluate the total cross-sections for both bbˉHHb\bar bHH and ttˉHHt\bar tHH, and calculate the total number of events considering the complete set of Feynman diagrams at tree-level. We vary the triple coupling κλ3H\kappa\lambda_{3H} within the range κ=−1\kappa=-1 and +2. The numerical computation is done for the energies expected to be available at a possible Future Linear e+e−e^{+}e^{-} Collider with a center-of-mass energy 800,1000,1500800, 1000, 1500 GeVGeV and a luminosity 1000 fb−1fb^{-1}. Our analysis is also extended to a center-of-mass energy 3 TeVTeV and luminosities of 1000 fb−1fb^{-1} and 5000 fb−1fb^{-1}. We found that for the process e+e−→bbˉHHe^{+}e^{-}\to b \bar b HH, the complete calculation differs only by 3% from the approximate calculation e+e−→ZHH(Z→bbˉ)e^{+}e^{-}\to ZHH(Z\to b\bar b), while for the process e+e−→ttˉHHe^{+}e^{-}\to t \bar tHH, the expected number of events, considering the decay products of both tt and HH, is not enough to obtain an accurate determination of the triple Higgs boson self-coupling.Comment: 19 pages, 12 figure
    • …
    corecore