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1 Introduction

We study phenomenological implications of the breaking of universality in weak interactions.
Particular attention is paid to the signatures of new heavy elementary vector particles (Z 0

bosons), which can be detected at the present or future high-energy e+e� and hadron colliders.
As the quarks of the third family (t and b) are signi�cantly heavier than those of the other
two families, one may speculate that such a boson may be involved in the formation of this
di�erence, and thereby interact directly with the t and b quarks (as well as the � and �� ) and
only much more weakly with the lighter quarks and leptons, solely due to radiatively-created
mixings.

Both the phenomenology of Z 0-boson production and theoretical models for its dynamics
are considered. A theoretical extension of the Standard Model adopting a new heavy Z 0 boson
may need to include more unknown heavy fermions and scalar Higgs bosons. Otherwise the
quantum anomalies break the unitarity and the mass pattern for heavy fermions will violate
experimental bounds on deviations from the Standard Model in the low energy data.

There can be a variety of possible models depending on the strength of the vector and
axial-vector couplings of the Z 0 to quarks and leptons. Additional bosons naturally appear in
Grand Uni�cation Theories [1, 2]. The left{right-symmetric model also contains at least one
Z 0 boson [3].

Usually these Z 0 bosons interact universally with the fermions of all families; the phe-
nomenology of such particles was considered by several authors [1, 2, 4, 5]. There exists a
scheme in which Grand Uni�cation symmetry breaking leads to the formation of a so-called
`leptophobic' and `hadrophilic' Z 0 boson, which interacts only with hadrons. The phenomenol-
ogy of such bosons was also considered [2, 6, 7]. A related idea has been advanced by Okun
and collaborators, who consider a `leptonic' photon [8].

A scheme with the breaking of universality in weak interactions has been studied by Dyatlov
[9] in connection with the problem of the fermion mass hierarchy. It was shown that a neutral
gauge boson interacting di�erently with the heaviest fermions naturally leads to a realistic mass
hierarchy and Kobayashi-Maskawa mixing matrix. The phenomenology of a Z 0 interacting only
with the quarks of the third family was considered recently by Holdom [10], by Frampton, Wise
and Wright [11], and by Muller and Nandi [12].

Irrespectively of the scheme of the Z 0-boson embedding into an extended electroweak theory
one should know the feasibility of detecting such a particle at a particular accelerator. Various
high-energy colliders have been examined for that purpose: hadronic colliders (Tevatron and
the LHC), LEP2 and future electron{positron colliders (NLC).

For p�p and pp colliders the main production mechanisms are the following: b�b-quark an-
nihilation (from the small sea contribution in protons) near the Z 0 peak, quark{antiquark
annihilation into a Z with conversion of the Z into a Z 0 due to the small mixing and also
gluon{gluon fusion. The Z 0 boson is assumed to be detected through an excess of b�b or t�t
hadronic jets. Other processes are suppressed by the kinematics and due to small coupling con-
stants. Numerical estimates have been made to determine whether the Z 0 signal can compete
with the two-jet background originating from non-resonant processes. The conclusion is that
the direct observation of a heavy Z 0 (heavier than the Z) with moderate coupling constants to
b and t quarks is impossible at the p�p Tevatron collider and unlikely even at the LHC.

The most interesting possibility is to investigate the feasibility of a Z 0 discovery at LEP2
[13] and the next generation of e+e� colliders whose design is now intensively discussed [14].
For these colliders the background of �+�� and two (b�b or t�t) jets is signi�cantly lower than for
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the previous types of colliders; therefore there is a possibility of having kinematical windows
for detecting a Z 0 boson.

The paper is organized as follows: In Sect. 2 we set up the notation and discuss constraints on
the Z 0 from electroweak precision data. In Sect. 3 we consider production at hadronic colliders,
and in Sect. 4 we consider e+e� colliders. Section 5 contains a brief summary. In Appendix A
we discuss the constraints on the (expanded) scalar sector due to anomaly cancellations, and
in Appendix B we give some formulas on the QCD background.

2 Model parameters and experimental input

We consider a model with an additional massive neutral U(1) gauge boson Z 0. The Lagrangian
can be written in the form:

L = LSM + LZ0

where LSM is the full Lagrangian of the Standard Model (SM) and LZ0 is an additional term:

LZ0 = LYM + LHiggs + Lint:

Here LYM is the usual free Yang{Mills Lagrangian for the Z 0 boson, LHiggs the Lagrangian
for scalar particles interacting with the Z 0 (one may consider di�erent choices for the Higgs
sector|some possible Higgs structures are discussed in Appendix A|see also [11, 15]), and
Lint speci�es the interactions of the additional neutral boson with fermions.

2.1 Additional NC interactions

We assume that the Z 0 interacts only with fermions of the third family. Then the neutral-current
Lagrangian is of the form [2]:

�LNC = eJ�emA� + gZJ
�Z� + gZ0J 0�Z 0

�; (2.1)

where the �rst two terms are just those of the SM and J 0� involves only the third-family
fermions, t, b, � and �� . This form of LNC corresponds to the case where the new U(1) neutral
gauge particle is not mixed with the photon [15].

In the usual notation of the SM one has gZ = g= cos �W, while gZ0 is a phenomenologically
free parameter. However, in more complete theories involving Z 0 (i.e. GUT or LR models), the
value of gZ0 is tightly connected to gZ [2, 7]:

gZ0 =

r
5

3
sin �W

p
� gZ; (2.2)

where � is usually in the range 2=3 to 1 [2]. This means that the maximum value is

gZ0=gZ � 0:62: (2.3)

We shall use this constraint in most of the numerical work that is presented.
Let us write down the Lagrangian for interactions of the Z and Z 0 with the fermions of the

third family:

�LZZ0 = gZZ�

X
f=tb���

� f
� (vf � af5) f + gZ0Z

0
�

X
f=tb���

� f
�
�
v0f � a0f5

�
 f : (2.4)
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The parameters vf and af are de�ned in the SM as follows:

vf =
1
2
T3L � sin2 �WQ; af =

1
2
T3L; (2.5)

where T3 and Q are the third component of weak isospin and of electric charge, respectively
(we suppress their avour indices). The parameters v0f and a0f represent the chiral properties
of the Z 0 interactions with fermions and the relative strengths of these interactions. One of
all these parameters for all fermions can be absorbed into gZ0, and in order to avoid this we
normalise v0�

2+ a0�
2 = 1

2
; this normalization was used in [7] when obtaining Eq. (2.2). However,

in our model the quantity v0f
2 + a0f

2 may vary from fermion to fermion. The cancellation of
ABJ anomalies restricts the possible choice of v0f and a

0
f and will be discussed in Appendix A.

The weak eigenstates Z� and Z 0
� may be mixed so that the mass eigenstates are:

�
Z1

Z2

�
=

�
cos � sin �
� sin � cos �

��
Z

Z 0

�
: (2.6)

Then the well-known value of the SM Z-boson mass corresponds in this model to the Z1 mass
(M1), while the mass of the Z2 boson (M2) is, of course, unknown. It is possible to rewrite
Eq. (2.4) in terms of the mass eigenstates:

�LZ1Z2 = gZ

�
Z1�

X
f=tb���

� f
� (vf1 � af15) f

+Z2�

X
f=tb���

� f
� (vf2 � af25) f

�
; (2.7)

where

vf1 = cos � vf +
gZ0

gZ
sin � v0f ; af1 = cos � af +

gZ0

gZ
sin � a0f ;

vf2 =
gZ0

gZ
cos � v0f � sin � vf ; af2 =

gZ0

gZ
cos � a0f � sin � af : (2.8)

The introduction of mixing between the Z and Z 0 changes the couplings of the SM, which
are extracted from the conventional experimental input. In fact, in the SM one has the stan-
dard electroweak input [16] of �(0), GF [17] together with MZ = (91:1863� 0:002) GeV [18].
This input contains enough parameters for the determination of the SM electroweak coupling
constants g and g0 of SU(2)L and U(1)Y , respectively, and the Higgs vacuum expectation value
v. In order to do this let us introduce the following quantities:

�2 � ��(0)p
2GF

� (37:280 GeV)2 (2.9)

and [19, 20]

� � GNC
F

GCC
F

(2.10)

where GNC
F is the four-fermion NC Fermi coupling constant in the limit of zero momentum

transfer. At the tree level the � parameter can be de�ned as �0 =M2
W=(M

2
Z cos

2 �W) and in the
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SM �0 = 1 due to the doublet Higgs structure, while at the one-loop level it acquires radiative
corrections [19]1

� � 1

1���T
; ��T �

3GF

8�2
p
2
m2

t � 0:01: (2.11)

Then it is possible to express the couplings of Eq. (2.4) in terms of the above-mentioned
input [15]:

gZ = (4
p
2GFM

2
Z�)

1=2; (2.12)

sin2 �W =
1

2
�
s
1

4
� �2

�M2
Z

�(MZ)

�(0)
: (2.13)

It should be stressed that the angle introduced above di�ers from the conventionally de�ned
Weinberg angle:

sin2 �0 cos
2 �0 =

�2

M2
Z

�(MZ)

�(0)
: (2.14)

The one-loop expression for this di�erence can be found in [21].
In the extended model the mass of the weak eigenstate MZ (i.e. the matrix element of the

mass operator) is unknown: it is related to the mass values M1 and M2, and to the mixing �,
as

tan2 � =
M2

Z �M2
1

M2
2 �M2

Z

: (2.15)

As a result, for non-zero mixing angles there are corrections to the Weinberg angle �W
and gauge couplings g and g0. They acquire dependence, now not only from the standard
electroweak input, but from the parameters of the extended model (�, M2) as well. This means
that the results of a measurement of other electroweak quantities may be used to restrict these
parameters.

Following [15] one �nds that in the extended model Eq. (2.13) should be modi�ed by MZ !
M1, while the � parameter acquires additional contributions at the tree level:

� from the ZZ 0 mixing (��M):

�M = 1 + sin2 �

�
M2

2

M2
1

� 1

�
=

1 + (M2
2 =M

2
1 ) tan

2 �

1 + tan2 �
; (2.16)

� from the additional Higgs sector|related to the pattern of symmetry breaking (��SB)
(the scalar sector of this theory necessarily contains additional Higgs �elds),

so that:

� = �SB � �M � �T =
1

1���
;

�� = ��SB +��M +��T ; (2.17)

1For b�b �nal states there are extra vertex corrections [15].
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where �SB and �M contain tree-level corrections due to the extension of the model, whereas �T
contains the SM radiative corrections (dominated by the top quark). Of course, in the extended
Z 0 model there exist additional radiative corrections to the � parameter, which can even be
rather large since there is no decoupling of the heavy particles for these corrections, but we
restrict ourselves by considering only the tree-level e�ects of the non-standard particles.

If the scalar sector of the theory contains only doublets and singlets of the SU(2)L group
one has ��SB = 0. In further considerations we shall use this assumption by default.

2.2 Existing bounds on the Z 0 mass

A Z 0 would contribute with full strength to the decay of � states to �+��, suppressed only by
the Z 0 propagator. The moderate agreement of the branching ratio [17]

BR(�) � �(�(1S)! �+��)
�(�(1S)! all)

= 0:0297� 0:0035; (2.18)

with

BR(e) = 0:0252� 0:0017; BR(�) = 0:0248� 0:0007; (2.19)

implies that the Z 0 mass cannot be too low.
Let us estimate this lower bound. Since the �(1S) is a natural-parity state, only the vector

part of the hadronic current contributes to its decay. Hence, no restriction can be obtained
for the pure axial Z 0b�b vertex without ZZ 0 mixing (such mixing e�ects are small, and will be
omitted from the discussion of �(1S) decay). For couplings involving the vector current, one
may obtain a lower bound on the Z 0 mass: MZ0 > 50 GeV for vector{vector chiralities (in the
Z 0b�b and Z 0�+�� vertices), MZ0 > 22 GeV for the vector{axial-vector case, and MZ0 > 35 GeV
for the LL, RR, LR and RL cases.

Another kind of restriction can be obtained from the � parameter, as discussed above. If
one combines the LEP results with the MW=MZ value, it is possible to conclude that [22]

2 � 10�3 < �� < 8 � 10�3 for 150 GeV < mt < 200 GeV (2.20)

and 70 GeV < mH < 1000 GeV. Under the assumption that ��SB = 0, this leads to

1 <� �M <� 1:005: (2.21)

The lower bound on �M implies that M2 > M1.
However, one should keep in mind that these constraints are valid only under the assumption

that �SB = 1, which requires a certain simple structure of the Higgs sector. For a more general
scalar sector one has [23]

�SB = 1 +

P
allHhH

y
0j(~T 2 � 3T 2

3 )jH0ivac
2
P

allHhH
y
0jT 2

3 jH0ivac
: (2.22)

For Higgs �elds with isospin higher than 1/2, �SB may be less than unity and the above-
mentioned constraints are removed.
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3 Hadronic production

The hypothetical Z 0 boson could be produced in proton{proton (antiproton) collisions through
direct Drell{Yan-like coupling of b and �b sea quarks, through gluon{gluon fusion, with the
gluons coupled to b or t quark loops, as well as through ZZ fusion and WW fusion. We shall
consider these mechanisms in turn in the following, focusing �rst on the prospects for producing
such vector bosons at the Fermilab Tevatron, and then turn to the LHC in Sect. 3.4. In this
section we consider the limit of no ZZ 0 mixing, which implies MZ0 = M2. Also, we shall here
disregard the constraint (2.3), letting Z 0 couplings be of O(1).

3.1 Direct production by b�b annihilation

The vector boson Z 0 may be produced by the direct Drell{Yan mechanism, i.e. annihilation
of a b quark from one proton (or antiproton) and a �b from the other. The matrix element is
proportional to

M = g2Z0

�
�v(p2)

�(v0b � a0b5)u(p1)
� �g�� + k�k�=M

2
Z0

k2 �M2
Z0 + iMZ0�Z0

�
�u(q)�(v0q � a0q5)v(�q)

�
; (3.1)

where p1 and p2 are the relevant parton momenta of the incident proton and antiproton, with
k = p1 + p2, and q and �q the �nal-state quark and antiquark momenta. The corresponding
polarisation-averaged square becomes

jM j2 =
4g4Z0

(k2 �M2
Z0)2 + (MZ0�Z0)2

�
X0 +m2

bXb +m2
qXq +m2

bm
2
qXbq

+m4
bXbb +m4

qXqq

	
; (3.2)

where mq (= mb or mt) denotes the mass of the �nal-state quarks and

X0 = 1
2
(v0b

2 + a0b
2)(v0q

2 + a0q
2)(t̂2 + û2) + 2v0ba

0
bv
0
qa
0
q ŝ(t̂� û);

Xb = (v0q
2 + a0q

2)[3(v0b
2 + a0b

2)(ŝ+ 2t̂) + 2v0b
2 ŝ] + 12v0ba

0
bv
0
qa
0
qŝ;

Xq = (v0b
2 + a0b

2)[3(v0q
2 + a0q

2)(ŝ+ 2t̂) + 2v0q
2 ŝ] + 12v0ba

0
bv
0
qa
0
q ŝ;

Xbq = 4fv0b2 v0q2 + a0b
2a0q

2[3� 2(ŝ=M2
Z0) + (ŝ=M2

Z0)2]g;
Xbb = Xqq = 2(v0b

2 + a0b
2)(v0q

2 + a0q
2); (3.3)

with ŝ = k2, t̂ = (p1 � q)2, and û = (p1 � �q)2.
For the decay of the Z 0 (of mass MZ0) to a fermion{antifermion pair (of mass mf ), we �nd

the partial decay width at the tree level

�f =
g2Z0 MZ0

12�

q
1� (2mf=MZ0)2

�
v0f

2

�
1 +

2m2
f

M2
Z0

�
+ a0f

2

�
1�

4m2
f

M2
Z0

��
; (3.4)

where v0f and a
0
f denote the vector and axial couplings, respectively. Thus, the total fermionic

width would be given by

�Z0 = �b + �t + �� + ��� : (3.5)
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The inclusive cross section may be expressed in terms of a convolution integral over b-quark
distribution functions:

d�

dE?
=

Z
dx1

Z
dx2

d3�̂

dE?dx1dx2
f b1(x1)f

�b
2(x2); (3.6)

with E? the transverse energy of the jets, and f qi (x) the b (
�b)-quark distribution functions. The

elementary cross section is given by

d8�̂

dx1dx2
= (2�)4�(4)(p1 + p2 � q � �q)

1

4E1E2vrel
jM j2 d3q

(2�)32Eq

d3�q

(2�)32E�q

; (3.7)

with jM j2 the square of the matrix element in Eq. (3.2), properly averaged and summed over
polarisations, and 4E1E2vrel = 2(p1 + p2)

2 � 2ŝ. Straightforward kinematical considerations
lead to:

d3�̂

dE?dx1dx2
=

1

2�

1

8ŝ3=2
jM j2 E?q

E2
q � E2

? cosh y � Eq sinh y
; (3.8)

where y is the rapidity and

Eq

E�q

�
= 1

2

p
ŝ
h
cosh y � sinh y

p
1� 4E2

?=ŝ
i
: (3.9)

It is convenient to replace the integration over x1 and x2 by one over rapidity and ŝ, the
invariant mass squared of the Z 0. With � � ŝ=s, where s is the squared c.m. energy of the
proton{antiproton system, we have x1 =

p
� ey and x2 =

p
� e�y, and obtain

d�

dE?
=

1

2�

1

8s

Z
dŝ

ŝ
p
ŝ

Z
dy jM j2 f b1(x1)f

�b
2(x2)

E?q
E2
q � E2

? cosh y � Eq sinh y
; (3.10)

where jM j2 is obtained from Eq. (3.2).
Resulting cross sections are given in Fig. 1 for the Fermilab energy,

p
s = 1:8 TeV, for three

values of the mass,MZ0 = 100, 200 and 400 GeV. We here disregard the constraint (2.3), taking
the more `unbiased' view that gZ0a0 and gZ0v0 are of O(1). (If we adopt Eq. (2.3), the cross
section would drop by about two orders of magnitude.) For the distribution of b (�b) quarks in
the incident protons and antiprotons, we use standard values [24, 25]. For comparison, we also
show the dominant QCD contributions [cf. Appendix B] and data (summed over all avours)
[26]. The direct b�b production through a Z 0 is seen to be below the QCD rate by 3{4 orders of
magnitude, even for a `light' Z 0.

3.2 Gluon fusion

In the collisions of protons and antiprotons at Fermilab (or protons at LHC), gluon fusion may,
via a suitable quark triangle diagram, lead to production of such Z 0 bosons. The inclusive cross
section may be expressed in terms of a convolution integral over gluon distribution functions,
similar to Eq. (3.6):

d�

dE?
=

Z
dx1

Z
dx2

d3�̂

dE?dx1dx2
f
g
1 (x1)f

g
2 (x2) (3.11)
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with f gi (x) gluon distribution functions. The elementary cross section is given by an expression
similar to Eq. (3.7), where the amplitude for the production of q�q (b�b or t�t) �nal states may be
expressed as

M = V ab
����

�(1)��(2) gZ0

�g�� + k�k�=M2
Z0

k2 �M2
Z0 + iMZ0�Z0

[�u(q)�(v
0
q � a0q5)v(�q)] : (3.12)

The factor V ab
��� describes the Z 0gg vertex (a and b are colour indices), which we take from the

corresponding expression for the Zgg vertex, given by Kniehl and K�uhn [27].
By current conservation, k� [�u(q)�v(�q)] = 0. Furthermore, for on-shell gluons, the vertex

function simpli�es considerably. Averaging over gluon polarisations, and summing over q and
�q polarisations, we obtain

jM j2 = 4a0Q
2g4Z0

��s
�

�2
�abjBQj2

�
ŝ

M2
Z0

�2

a0q
2m2

q ŝ : (3.13)

Here, a0Q describes the axial coupling of Z 0 to the quark �eld of the triangle diagram, nor-
malised as in Sect. 2. (If we were to replace the Z 0 by the ordinary Z, we would get a0QgZ0 !
eT3=(2 sin �W cos �W), with T3 = �1

2
the quark isospin.) The coe�cient BQ is given in Ref. [27].

For a triangle diagram of quark avour Q, it is

BQ =
ŝ

2�

�
1� 2m2

QC0

�
; (3.14)

with � = �(s1; s2; ŝ) = ŝ2 the K�allen function (for on-shell gluons, s1 = s2 = 0), mQ the mass
of the loop quark, and C0 given as

C0 =
1

2ŝ
(2�� �)2; sin� =

q
4m2

Q=ŝ� 1; ŝ < 4m2
Q; (3.15)

C0 = � 1

2ŝ

�
log

1 + â

1� â
� i�

�2

; â =
q
1� 4m2

Q=ŝ < 1; 4m2
Q < ŝ;

depending on whether ŝ is below or above the threshold associated with the loop quark. We
consider the contributions from both b and t quarks to this loop:

a0Q
2jBQj2 ! ja0bBb + a0tBtj2: (3.16)

The result (3.13) is proportional to a0q
2m2

q. According to Furry's theorem, the vector part of
the triangle diagram cancels, and the remaining axial anomaly is proportional to the �nal-state
quark mass, here denoted by mq. At moderate energies, the relevant �nal states are b�b, thus
mq = mb. If the energy is high enough, there is a similar contribution for t�t �nal states.

Replacing the integrations over x1 and x2 by integrations over rapidity and ŝ, the invariant
mass squared of the Z 0, one obtains an expression similar to Eq. (3.10), where the b and �b
distribution functions should be replaced by gluon distribution functions, and where jM j2 also
should contain a factor 1=8 from colour matching of the two gluons.

Numerical values are obtained for these cross sections, using standard gluon distribution
functions [24, 25]. The resulting cross sections are for the Tevatron energy shown in Fig. 2. We
have arbitrarily taken the axial couplings to b and t quarks to be the same. The cross section
is remarkably small, even for moderately low masses, MZ0 ' O(MZ). The resonant structure is
due to interference between the contributions of b- and t-quark triangle diagrams, cf. Eq. (3.16).
This interference is illustrated in Fig. 3, where for MZ0 = 200 GeV we compare three cases:
(1) the bbZ 0 and ttZ 0 axial couplings being the same (solid), (2) opposite (dashed), and (3) the
ttZ 0 axial coupling being zero. It appears that no variation of the chirality of these couplings
can make the cross section comparable with the QCD background.
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3.3 Fusion of ZZ or WW bosons

The fusion of two weak gauge bosons, like that of two gluons, can also lead to Z 0 production.
This could proceed through mixing, or via a triangle loop. A crude estimate for the magnitude
of this rate may be obtained in the Weizs�acker{Williams approximation. The resulting cross
section is found to be several orders of magnitude below the Drell{Yan rate.

3.4 Production at the LHC

At the LHC the sea-quark and gluon distributions are much less suppressed than at the `lower'
energy of the Tevatron, so it is of considerable interest to see if the Z 0 production can compete
with the QCD background. We show in Figs. 4 and 5 the cross sections for b�b Drell{Yan-
type production and gluon fusion, respectively. As at lower energies, it is the Drell{Yan-type
production that dominates the gluon-fusion mechanism and, relative to the QCD rate, the Z 0

production is now `only' suppressed by about two orders of magnitude. One must conclude
that it would be extremely hard to discover such vector bosons in hadronic collisions.

4 Electron{positron annihilation

In e+e� collisions the Z 0 boson could be produced directly via mixing with the Z boson; the
following channels with two-particle �nal states are sensitive to this mixing:

e+e� ! b�b; e+e� ! t�t; e+e� ! � �� : (4.1)

The �rst of these was discussed in [7, 11]. In the following subsection we are going to discuss
all these processes and calculate the relative deviation of the cross sections from their values in
the SM for di�erent values of the mixing angle � and the Z2 mass M2.

For the processes with more than two particles in the �nal state we will consider the process
e+e� ! b�b�e��e as one of the most important for LEP2 and future colliders.

4.1 Two-fermion �nal states

We �rst consider the processes e+e� ! b�b, t�t, �+�� as the simplest processes at electron{
positron colliders involving fermions of the third family, where the e�ect of Z 0 exchange could
be observable. Three Feynman diagrams describe this process, with the exchange of photons, Z1

and Z2. Deviations from the SM will occur only in the case where the mixing angle is non-zero.
(Without tree-level mixing, it will arise only through loop e�ects.) The e�ect of ZZ 0 mixing
changes the couplings of the Z boson and gives rise to Z2 exchange. The coupling between the
electron and the Z 0 is proportional to sin �, which by assumption is small. On the other hand,
this mechanism has the advantage that there is no suppression by the Z 0 propagator and the
e�ect might thus be observable.

The cross section is given by the expression (for mf �
p
s):

�f �f =
4��2

3s
F1; (4.2)
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where

F1 = Q2
eQ

2
f + 2Qe�ve1Qf �vf1Re�1 + (�v2e1 + �a2e1)(�v

2
f1 + �a2f1)j�1j2

+2Qe�ve2Qf �vf2Re�2 + (�v2e2 + �a2e2)(�v
2
f2 + �a2f2)j�2j2

+2(�ve1�ve2 + �ae1�ae2)(�vf1�vf2 + �af1�af2)Re�1�2
� ; (4.3)

with

�i =
s

s�M2
i + iMi�i

; (4.4)

and [cf. Eq. (2.8)]

�vi =
gZ

e
vi; �ai =

gZ

e
ai : (4.5)

The ratio gZ=e should be extracted from the standard electroweak input discussed in Sect. 2,
and include the `running' dependence from the e+e� energy

p
s.

For
p
s =M1 one can use the following [15, 16]

gZ

e
(M2

1 ) =
1

sin �W cos �W

����p
s=MZ

=

�
M2

1��(0)

�2�(M1)

�1=2
: (4.6)

For
p
s > M1 we will start with (4.6) and then use the solutions of the one-loop massless

renormalization-group equations for the SU(2) and U(1) running couplings, g and g0:

g2(s) = g2(M2
1 )

�
1 +

g2(M2
1 )

16�2
10

3
log

s

M2
1

��1
;

g02(s) = g02(M2
1 )

�
1� g02(M2

1 )

16�2
20

3
log

s

M2
1

��1
; (4.7)

which are related to e and sin �W as

e2 =
g2g02

g2 + g02
; sin2 �W =

g02

g2 + g02
: (4.8)

It should be emphasised that all the above-mentioned couplings depend, for the model under
consideration, on the mixing angle � and the mass M2 through the � parameter, cf. Eqs. (4.6)
and (4.7).

No deviation from the SM has been observed at LEP. One may thus obtain bounds on the
model parameters � and M2, taking into account available data on the Z0 peak. For LEP2 and
the NLC we take a rather conservatively anticipated precision. The sensitivity of observables,
e.g. of the total cross section �f �f , has been assessed numerically by de�ning a �2 function as
follows:

�2 =

�
��f �f
��f �f

�2

; (4.9)

where ��f �f = �f �f��SMf �f and the uncertainty ��f �f is the statistical one. As a criterion to derive
allowed regions for the coupling constants if no deviations from the SM were observed, and in
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this way to assess the sensitivity to the parameters � and M2, we impose that �
2 < �2crit, where

�2crit is a number that speci�es the desired level of signi�cance.
At the Z0 peak, the most sensitive quantity is the forward{backward asymmetry. The

resulting allowed bounds on � and M2, at the 95% C.L., are given for b�b and �+�� production
in Figs. 6{8, for di�erent assumed chiralities of the coupling to the Z 0 (vector, axial, left, right).
The relative gauge coupling is chosen according to [2] as gZ0=gZ ' 0:62. These bounds were
obtained from the data reported in [30], by means of the program ZEFIT, which has to be used
along with ZFITTER [31].

In these same �gures, we also present bounds corresponding to conservatively assumed
cross-section precisions of 5% and 10% at LEP2 and a linear collider operating at 500 GeV
(labelled NLC). These cross sections were calculated by means of the CompHEP [32] program.
The qualitative di�erence between the LEP1 and the LEP2 (or NLC) contours is due to the
following. At LEP1 (on resonance) there are three e�ects: modi�cation of the couplings due to
mixing, modi�cation of sin2 �W, and a shift of � from the SM value. The corresponding bounds
are smooth curves. At higher energies (LEP2 and NLC) there is an additional contribution
mediated by Z2 exchange. At relatively lowM2 values, the Z2-exchange contribution dominates
the deviation from the SM, whereas at higher M2 this contribution becomes less important.
The complicated shape of the contours is due to interference between direct (Z2 exchange) and
indirect e�ects. These e�ects interfere constructively at some values of sin �, and destructively
at others.

In our input scheme, for a �xed non-zero value of �, the gauge coupling gZ increases with
M2. This is due to the increase of �M , and hence of � [cf. Eqs. (2.12), (2.16) and (2.17)] with
M2. This leads to a deviation of the cross section away from the SM value. Thus, at large
values of M2, the e

+e� ! f �f cross section is seen to impose strong constraints on the allowed
mixing angle; there is a narrowing, at largeM2, of the allowed region in sin �. (If we had frozen
� and gZ in our calculations, then the di�erent points in these �gures would correspond to
di�erent choices of Higgs sector|which would be rather unnatural.)

For the case of b�b �nal states, we consider two di�erent centre-of-mass energies,
p
s = 190

and 500 GeV, in Figs. 6 and 7, respectively. The sensitivity of LEP2 and the NLC to � and M2

depends on the chiral property of the Z 0 coupling. For vector-, axial vector- and left-handed
couplings, LEP2 (and the NLC) will have more sensitivity than LEP1 at negative values of
�. For right-handed couplings, the situation is reversed. Thus, LEP2 and the NLC have the
potential to observe e�ects of such a Z 0 in this channel with masses up to the order of 1 TeV.
Concerning �+�� �nal states, it appears that studies at higher energies cannot improve on the
results obtained at LEP1, see Fig. 8.

In Fig. 9 we consider t�t �nal states at
p
s = 500 GeV. As compared with b�b �nal states,

the sensitivity is lower. However, the interference e�ects are di�erent, and it is therefore
complementary to the b�b channel.

Comparing the contour levels for the di�erent �nal states, one can see that the tightest
restrictions are obtained from the b�b �nal state, while the �+�� case is the least restrictive.
This di�erence can be understood from an analysis of the expression (4.3). In comparing with
the SM cross section, the important di�erence between the �nal-state fermions is the electric
charge, which dominates the main SM contribution. Thus, for a given value of (�;M2) away
from the resonance

p
s = M2, the relative deviation from the SM will be largest for b quarks

(because of the small electric charge) and smallest for � leptons (because of the large electric
charge).
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4.2 Four-fermion �nal states

We now turn our attention to the process e+e� ! b�b�e��e, which is sensitive to the three-boson
couplings. In the SM, there are in the unitary gauge 23 Feynman diagrams that contribute to
this process. In the extended model, the number of diagrams is 48 (in the unitary gauge), even
if all the scalars are excluded. However, deviations from the standard model occur only for the
case of a non-zero ZZ 0 mixing2. As a result of this mixing there appear three-boson couplings
involving the Z2.

Experimentally this process can be investigated by the detection of the b�b pair with missing
energy. In this case one measures the cross section of the processes e+e� ! b�b�i��i, integrated
over a suitable kinematical region (with the neutrinos of all three families in the �nal state).
However, following the work of Ref. [33], we believe that the main contribution comes from the
process with the �e��e pair in the �nal state.

The process has been studied using CompHEP, which generates the Feynman diagrams (we
omit virtual Higgs particles) and evaluates the cross section. This has been integrated over
phase space according to the cuts of Ref. [33]. For the b jets to be detectable, we require
them to have su�cient energy, to be away from the beam pipe, not too close to each other,
and not have an invariant mass close to the Z1. Furthermore, the missing momentum should
have a large transverse component and a low rapidity, and the undetected neutrinos should not
originate from a Z1:

Eb > 20 GeV; 20� < �b < 160�;

�b�b > 20�; jmb�b �mZ1
j < 3�Z

/pT > 40 GeV; �(/p) < 1;

j/m�mZ1
j > 5�Z: (4.10)

At a given energy, the cross section increases signi�cantly with increasing values of M2, and
also with j sin �j, as is shown in Fig. 10. The increase in the cross section seen at increasing
values of M2 is basically due to the fact that the coupling gZ increases through the increase of
the �M parameter, as was discussed in Sect. 4.1.

For the cases of
p
s = 190 and 500 GeV, and for vector couplings, the modi�cations of the

cross sections, with respect to the Standard Model, are given in Figs. 11 and 12, respectively.
The gross features of these �gures are rather similar to those for the b�b �nal states, and the
sensitivity is quite comparable.

5 Concluding remarks

We have shown that a Z 0 boson coupled only to the third-family fermions is rather di�cult
to discover, even at high-energy colliders, thus con�rming the more exploratory analysis of
Ref. [11].

For hadronic colliders, such as the Tevatron or the LHC, this Z 0 is invisible because of the
QCD background, which is many orders of magnitude greater than the cross sections involving
the Z 0. The data available from LEP1 already exclude signi�cant regions of the parameter space

2There is no tree-level WWZ
0 coupling since we assume the Z 0 is an SU(2) singlet. One should keep in

mind that the one-loop Feynman diagrams give rise to aWWZ
0 vertex even if at the tree level the mixing angle

vanishes.
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(�,M2). LEP2 and future e
+e� linear colliders can improve on these bounds, in particular from

studies of �nal states involving b�b.
It seems that some additional progress may be achieved in the study of processes with four

fermions in the �nal state, if one investigates not only the full cross sections, but also their
dependence from the b�b (t�t, � �� ) invariant mass. We hope to return to this question in future
work.
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Appendix A: Higgs sector and anomalies

Since we consider our model as an extension of the Standard Model, it should contain the
standard Higgs doublet:

H =
1p
2

�
h+

v + h0

�
(A.1)

where v is the vacuum expectation value. This �eld realizes the representation (1/2,1,0) of the
gauge group SU(2)L � U(1)Y � U(1)Y 0 and hence has the following covariant derivative:

D�H =

�
@� + igT aW a

� + i
g0

2
B�

�
H: (A.2)

The kinetic term for this �eld contributes to the mass terms of the W� and Z bosons:

jD�Hj2 =) v2

8
(gW 3

� � g0B�)
2 +

v2

2
g2W+

� W
��

=
v2

8

g2

cos2 �W
Z�Z

� +
v2

2
g2W+

� W
�� : (A.3)

This �eld does not supply the additional gauge boson Z 0 with a mass. It is impossible to assign
to the �eld H a non-zero Y 0 hypercharge: in this case the mass terms for the fermions of the
�rst two families will lose the U(1)Y 0 invariance. Therefore Y 0

H = 0 and in our model the �eld
H could give rise to the masses of the third-family fermions only in the case when Y 0

fL = Y 0
fR

(not necessarily zero). In the general case, when Y 0
fL 6= Y 0

fR, the ordinary Higgs �eld H does
not contribute to the masses of the third-family fermions.

The simplest way to obtain a Z 0 mass is to introduce a scalar singlet �, which transforms
as (0; 0; Y 0

S) and has a covariant derivative:

D�� =

�
@� + igZ0

Y 0
S

2
Z 0
�

�
�: (A.4)

With a non-vanishing vacuum expectation value, h�ivac = vS=
p
2, it produces the following

mass term for the Z 0 boson:

jD��j2 =)
g2Z0

8
Y 0
S
2v2SZ

0
�
2: (A.5)

By means of this �eld �, an arbitrary mass can produced for the Z 0 boson, but it is not
possible to get ZZ 0 mixing at the tree level. In the case where the Z 0 boson is not a pure vector
particle [Y 0

fL 6= Y 0
fR], it is also impossible to obtain gauge-invariant mass terms for the fermions

of the third family (see above).
In order to solve these two problems, let us introduce an additional Higgs doublet H1,

which interacts with the Z 0 and hence has a non-zero Y 0 hypercharge. This �eld transforms as
(1
2
; 1; Y 0

1) and has a covariant derivative:

D�H1 =

�
@� + igT aW a

� + i
g0

2
B� + i

gZ0

2
Y 0
1Z

0
�

�
H1: (A.6)
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(The value of Y 0
1 is not arbitrary when the �eld H1 gives rise to fermion masses, this will

be discussed at the end of this appendix.) With hH1ivac = v1=
p
2, it produces the following

contribution to the mass term of the neutral gauge bosons:

jD�H1j2 =)
g2

cos2 �W

v21
8

�
Z2
� +

g2Z0

g02
sin2 �WY

0
1
2Z 0

�
2 � 2

gZ0

g0
sin �WY

0
1Z�Z

0�
�
: (A.7)

So in this case when all three Higgs �elds are present, one obtains a mass matrix for the neutral
gauge bosons in the general form:

(Z;Z 0)

�
M2

Z M2
ZZ0

M2
ZZ0 M2

Z0

��
Z

Z 0

�
; (A.8)

where

M2
Z =

g2

4 cos2 �W
(v2 + v21); M2

Z0 =
g2Z0

4
(v2SY

2
S + v21Y

2
1 ); (A.9)

M2
ZZ0 = � g2

cos2 �W

v2

4

gZ0

g0
sin �WY1: (A.10)

After the diagonalization of this matrix, the mass eigenstates M1, M2 and the mixing angle
� can be expressed through v.e.v.'s of the introduced scalars. The �eld H1 also gives masses to
the third-family fermions.

However it should be stressed that the values of the Y 0 hypercharge are not arbitrary:
restrictions come from the triangle anomalies. The well-known condition of ABJ anomalies
reads [34, 35]:

Tr(TifTj; Tkg)L = Tr(TifTj; Tkg)R (A.11)

where T are the matrices of the fermion representations, and i, j, k may refer to di�erent
subgroups of the full gauge group.

In the Standard Model with the group SU(3)c�SU(2)L�U(1)Y , these conditions unambigu-
ously �x ratios of electric charges (or hypercharges) of fermions: four independent conditions
of diagrams with LLY , Y Y Y , ccY and ggY external �elds (here L denotes the SU(2)L �eld, Y
the U(1)Y �eld, c the SU(3) �eld, and g the graviton) for four ratios of YlL, YeR, YqL, YuR, YdR
have a single solution. For the extended model, there are additional conditions: LLY 0, Y Y Y 0,
Y Y 0Y 0, Y 0Y 0Y 0, ccY 0 and ggY 0, which necessarily lead to Y 0 = Y . All other Y 0 assignments
need an extension of the fermionic sector. In order not to introduce exotic fermions let us con-
sider the simplest extension of the fermionic sector, namely addition of right-handed neutrinos.
In this case the anomaly cancellation conditions, involving the Z 0 boson read:

LLY 0 : Y 0
LL + 3Y 0

QL = 0;

ccY 0 : 3(2Y 0
QL � Y 0

tR � Y 0
bR) = 0;

ggY 0 : 2Y 0
LL � Y 0

�R � Y 0
�R + 3(2Y 0

QL � Y 0
tR � Y 0

bR) = 0;

Y 0Y 0Y 0 : 2Y 0
LL

3 � Y 0
�R

3 � Y 0
�R

3 + 3(2Y 0
QL

3 � Y 0
tR

3 � Y 0
bR

3) = 0;

Y Y Y 0 : 2Y 0
LL � 4Y 0

�R + 3

�
2

9
Y 0
QL �

16

9
Y 0
tR �

4

9
Y 0
bR

�
= 0;

Y Y 0Y 0 : �2Y 0
LL

2 + 2Y 0
�R

2 + 3

�
2

3
Y 0
QL

2 � 4

3
Y 0
tR
2 +

2

3
Y 0
bR

2

�
= 0:

(A.12)
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Here, L and Q denote the third-family lepton and quark doublets. The last two equations are
not independent. With xi � Y 0

i =Y
0
LL, the system has the following solution:

xLL = 1; xQL = �1

3
; x�R = 2� x�R;

xbR =
2

3
� x�R; xtR = �4

3
+ x�R; (A.13)

where Y 0
�R (or x�R) remains undetermined. For the case x�R = 0 one gets Y = Y 0 (case of the

SM), whereas x�R = 1 corresponds to a purely vector Z 0 boson; the general case can be treated
as a linear combination of these two cases.

These values of fermionic hypercharges Y 0
i determine the hypercharge Y 0

1 of the H1 �eld:
the gauge invariance of the fermionic mass term necessarily leads to Y 0

1 = Y 0
�L � Y 0

�R.
A vector-like Z 0-fermion coupling is achieved with a universal choice: x�R = 1. However, as

follows from Eqs. (A.13), the assignment for the Z 0-fermion vertex to be axial, left- or right-
handed cannot be done universally. For instance, the coupling may be purely axial either for b
quarks, or for � leptons, or for t quarks, but not simultaneously.

Let us now comment on the chirality choices considered in Figs. 6{9. For the Z 0b�b coupling
(Figs. 6 and 7) to be vector, axial, left- or right-handed, one must choose x�R = 1, 1=3, 2=3, or
�1, respectively. For the Z 0�+�� coupling (Fig. 8) to be vector, axial, left- or right-handed,
one must choose x�R = 1, 3, 2, or �1, respectively. For the Z 0t�t coupling (Fig. 9) to be vector,
axial, left- or right-handed, one must choose x�R = 1, 5=3, 4=3, or 1, respectively.

It may be useful to notice that the cancellation of anomalies is necessary only if the addi-
tional Z 0 boson is treated as a fundamental particle. For a composite Z 0, arbitrary values of
fermionic hypercharge are allowed.

Appendix B: QCD background

We shall assume that light-avour quark jets can be rejected and do not constitute a back-
ground. Thus, the background of interest is the one due to b�b (and, at su�ciently high energies,
t�t) jets.

B.1 Quark{antiquark annihilation

With p1 + p2 = b+ �b, ŝ = (p1 + p2)
2, the matrix element can be written as

M = �v(p2)
�gTau(p1)

�g��
ŝ

�u(b)�gTbv(�b) �ab; (B.1)

with g the QCD coupling. Properly averaged over spin and colour, the squared matrix element
takes the form:

jM j2 = 8

9

g4

ŝ2
f2(t̂�m2

i �m2
b)
2 + 2(û�m2

i �m2
b)
2 + (m2

i +m2
b)ŝg; (B.2)

where t̂ = (p1 � b)2, û = (p1 � �b)2, and p21 = p22 = m2
i .
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B.2 Gluon fusion

Gluon fusion will also lead to b�b (or t�t) jets. There are three diagrams contributing, including
the one due to the three-gluon vertex (p1 + p2 = p = b +�b):

M = M1 +M2 +M3;

M1 = �u(b)ig/�1Ta
i(/b� /p1 +mb)

(b� p1)2 �m2
b

ig/�2Tb v(�b);

M2 = �u(b)ig/�2Tb
i(/b� /p2 +mb)

(b� p2)2 �m2
b

ig/�1Ta v(�b);

M3 = �u(b)ig�Tcv(�b)
g�� � �p�p�=p2

p2 + i�

�(�ig)fabc[g��(p1 � p2)� + g��(p2 + p)� � g��(p+ p1)�]�
�
1 �

�
2 :

(B.3)

Since the �nal-state quark and antiquark are taken to be on-shell, the gauge-dependent part
of M3 vanishes. Properly averaged over spin and colour, the squared matrix element takes the
form

jM j2 = g4

2

�
X + Y + Z

�
; (B.4)

where X is due to M1 and M2, Y is due to their interference with M3, and Z represents M3

squared. Furthermore,

X =
1

(t̂�m2
b)
2
Xtt +

1

(t̂�m2
b)(û�m2

b)
Xtu +

1

(û�m2
b)
2
Xuu; (B.5)

with

Xtt =
8

3

�
(t̂+m2

b)(û�m2
b) + 2m2

b(ŝ+ 2m2
b)
�
;

Xtu = �2

3
m2

b(ŝ� 4m2
b);

Xuu =
8

3

�
(t̂�m2

b)(û+m2
b) + 2m2

b(ŝ+ 2m2
b)
�
: (B.6)

Similarly,

Y = Yt + Yu; (B.7)

with

Yt =
�6

ŝ(t̂�m2
b)

�
(t̂�m2

b)
2 + ŝm2

b

�
;

Yu = Yt(t̂$ û) (B.8)

and �nally

Z =
12

ŝ2

�
(t̂�m2

b)(û�m2
b)� ŝ(ŝ+ 2m2

b)
�
: (B.9)
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′

Figure 1. Cross sections for inclusive jet production at the Tevatron, p�p colli-
sions at Ecm = 1:8 TeV. The solid curves represent Drell{Yan-type production
of Z 0, from b and �b (sea) quarks in the initial state. Three masses are considered,
MZ0 = 100, 200 and 400 GeV. The couplings are: gZ0v0b = gZ0a0b = 1. Also the
contributions from the dominant QCD mechanisms are shown, as well as data
(summed over all avours) [26].
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Figure 2. Cross sections for inclusive jet production at the Tevatron, p�p col-
lisions at Ecm = 1:8 TeV. The solid curves represent production of Z 0, from
gluon fusion. Three masses are considered, MZ0 = 100, 200 and 400 GeV.
Both b and t quarks contribute to the triangle diagram, with equal couplings,
gZ0a0t = gZ0a0b = 1. Also the contributions from the dominant QCD mechanisms
are shown, as well as data (summed over all avours) [26].
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Figure 3. Similar to Fig. 1, but for MZ0 = 200 GeV only. Three cases of
q�qZ 0 couplings are considered: (gZ0a0t, gZ0a0b) = (1; 1) (solid), (0; 1) (dotted), and
(1;�1) (dashed).
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Figure 4. Cross sections for inclusive jet production at the LHC, pp collisions
at Ecm = 14 TeV. The solid curves represent Drell{Yan-type production of Z 0,
from b and �b (sea) quarks in the initial state. Three masses are considered,
MZ0 = 100, 200 and 400 GeV. Also the contributions from the dominant QCD
mechanisms are shown, using standard distribution functions [24].
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Figure 5. Cross sections for inclusive jet production at the LHC, pp collisions at
Ecm = 14 TeV. The solid curves represent production of Z 0, from gluon fusion.
Three masses are considered, MZ0 = 100, 200 and 400 GeV. Both b and t quarks
contribute to the triangle diagram, with equal couplings, gZ0a0t = gZ0a0b = 1.
Also the contributions from the dominant QCD mechanisms are shown.
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Figure 6. Allowed regions of sin � andM2 obtained from LEP1 data (95% C.L.)
for the process e+e� ! b�b. Also shown are bounds anticipated from LEP2 at
levels of assumed precision as indicated by labels. Four di�erent chiralities are
considered.
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Figure 7. Allowed regions of sin � andM2 obtained from LEP1 data (95% C.L.)
for the process e+e� ! b�b. Also shown are bounds anticipated from 500 GeV
at levels of assumed precision as indicated by labels.

28



Figure 8. Allowed regions of sin � andM2 obtained from LEP1 data (95% C.L.)
for the process e+e� ! �+��. Also shown are bounds anticipated from LEP2
at levels of assumed precision as indicated by labels. Four di�erent chiralities
are considered.
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Figure 9. Allowed regions of sin � andM2 anticipated for the process e
+e� ! t�t

at the NLC at levels of assumed precision as indicated by labels. Four di�erent
chiralities are considered.
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Figure 10. Cross section for b�b�e��e production at
p
s = 190 GeV, subject to

cuts given by Eq. (4.10).
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Figure 11. Bounds anticipated from LEP2 for e+e� ! b�b�e��e at levels of
assumed precision as indicated by labels. Also shown is the allowed region of
sin � and M2 obtained from LEP1 data (95% C.L.) for the process e+e� ! b�b.
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Figure 12. Bounds anticipated from
p
s = 500 GeV for e+e� ! b�b�e��e at levels

of assumed precision as indicated by labels. Also shown is the allowed region of
sin � and M2 obtained from LEP1 data (95% C.L.) for the process e+e� ! b�b.

33


