11,031 research outputs found
Bounds on Information Propagation in Disordered Quantum Spin Chains
We investigate the propagation of information through the disordered XY
model. We find, with a probability that increases with the size of the system,
that all correlations, both classical and quantum, are suppressed outside of an
effective lightcone whose radius grows at most polylogarithmically with |t|.Comment: 4 pages, pdflatex, 1 pdf figure. Corrected the bound for the
localised propagator and quantified the probability it bound occur
Freak Waves in Random Oceanic Sea States
Freak waves are very large, rare events in a random ocean wave train. Here we
study the numerical generation of freak waves in a random sea state
characterized by the JONSWAP power spectrum. We assume, to cubic order in
nonlinearity, that the wave dynamics are governed by the nonlinear Schroedinger
(NLS) equation. We identify two parameters in the power spectrum that control
the nonlinear dynamics: the Phillips parameter and the enhancement
coefficient . We discuss how freak waves in a random sea state are more
likely to occur for large values of and . Our results are
supported by extensive numerical simulations of the NLS equation with random
initial conditions. Comparison with linear simulations are also reported.Comment: 7 pages, 6 figures, to be published in Phys. Rev. Let
Implementing vertex dynamics models of cell populations in biology within a consistent computational framework
The dynamic behaviour of epithelial cell sheets plays a central role during development, growth, disease and wound healing. These processes occur as a result of cell adhesion, migration, division, differentiation and death, and involve multiple processes acting at the cellular and molecular level. Computational models offer a useful means by which to investigate and test hypotheses about these processes, and have played a key role in the study of cell–cell interactions. However, the necessarily complex nature of such models means that it is difficult to make accurate comparison between different models, since it is often impossible to distinguish between differences in behaviour that are due to the underlying model assumptions, and those due to differences in the in silico implementation of the model. In this work, an approach is described for the implementation of vertex dynamics models, a discrete approach that represents each cell by a polygon (or polyhedron) whose vertices may move in response to forces. The implementation is undertaken in a consistent manner within a single open source computational framework, Chaste, which comprises fully tested, industrial-grade software that has been developed using an agile approach. This framework allows one to easily change assumptions regarding force generation and cell rearrangement processes within these models. The versatility and generality of this framework is illustrated using a number of biological examples. In each case we provide full details of all technical aspects of our model implementations, and in some cases provide extensions to make the models more generally applicable
A search for thermal X-ray signatures in Gamma-Ray Bursts I: Swift bursts with optical supernovae
The X-ray spectra of Gamma-Ray Bursts can generally be described by an
absorbed power law. The landmark discovery of thermal X-ray emission in
addition to the power law in the unusual GRB 060218, followed by a similar
discovery in GRB 100316D, showed that during the first thousand seconds after
trigger the soft X-ray spectra can be complex. Both the origin and prevalence
of such spectral components still evade understanding, particularly after the
discovery of thermal X-ray emission in the classical GRB 090618. Possibly most
importantly, these three objects are all associated with optical supernovae,
begging the question of whether the thermal X-ray components could be a result
of the GRB-SN connection, possibly in the shock breakout. We therefore
performed a search for blackbody components in the early Swift X-ray spectra of
11 GRBs that have or may have associated optical supernovae, accurately
recovering the thermal components reported in the literature for GRBs 060218,
090618 and 100316D. We present the discovery of a cooling blackbody in GRB
101219B/SN2010ma, and in four further GRB-SNe we find an improvement in the fit
with a blackbody which we deem possible blackbody candidates due to
case-specific caveats. All the possible new blackbody components we report lie
at the high end of the luminosity and radius distribution. GRB 101219B appears
to bridge the gap between the low-luminosity and the classical GRB-SNe with
thermal emission, and following the blackbody evolution we derive an expansion
velocity for this source of order 0.4c. We discuss potential origins for the
thermal X-ray emission in our sample, including a cocoon model which we find
can accommodate the more extreme physical parameters implied by many of our
model fits.Comment: 16 pages, 6 figures, accepted for MNRA
TechMiner: Extracting Technologies from Academic Publications
In recent years we have seen the emergence of a variety of scholarly datasets. Typically these capture ‘standard’ scholarly entities and their connections, such as authors, affiliations, venues, publications, citations, and others. However, as the repositories grow and the technology improves, researchers are adding new entities to these repositories to develop a richer model of the scholarly domain. In this paper, we introduce TechMiner, a new approach, which combines NLP, machine learning and semantic technologies, for mining technologies from research publications and generating an OWL ontology describing their relationships with other research entities. The resulting knowledge base can support a number of tasks, such as: richer semantic search, which can exploit the technology dimension to support better retrieval of publications; richer expert search; monitoring the emergence and impact of new technologies, both within and across scientific fields; studying the scholarly dynamics associated with the emergence of new technologies; and others. TechMiner was evaluated on a manually annotated gold standard and the results indicate that it significantly outperforms alternative NLP approaches and that its semantic features improve performance significantly with respect to both recall and precision
Exploring Interacting Quantum Many-Body Systems by Experimentally Creating Continuous Matrix Product States in Superconducting Circuits
Improving the understanding of strongly correlated quantum many body systems
such as gases of interacting atoms or electrons is one of the most important
challenges in modern condensed matter physics, materials research and
chemistry. Enormous progress has been made in the past decades in developing
both classical and quantum approaches to calculate, simulate and experimentally
probe the properties of such systems. In this work we use a combination of
classical and quantum methods to experimentally explore the properties of an
interacting quantum gas by creating experimental realizations of continuous
matrix product states - a class of states which has proven extremely powerful
as a variational ansatz for numerical simulations. By systematically preparing
and probing these states using a circuit quantum electrodynamics (cQED) system
we experimentally determine a good approximation to the ground-state wave
function of the Lieb-Liniger Hamiltonian, which describes an interacting Bose
gas in one dimension. Since the simulated Hamiltonian is encoded in the
measurement observable rather than the controlled quantum system, this approach
has the potential to apply to exotic models involving multicomponent
interacting fields. Our findings also hint at the possibility of experimentally
exploring general properties of matrix product states and entanglement theory.
The scheme presented here is applicable to a broad range of systems exploiting
strong and tunable light-matter interactions.Comment: 11 pages, 9 figure
Antiphase dynamics in a multimode semiconductor laser with optical injection
A detailed experimental study of antiphase dynamics in a two-mode
semiconductor laser with optical injection is presented. The device is a
specially designed Fabry-Perot laser that supports two primary modes with a THz
frequency spacing. Injection in one of the primary modes of the device leads to
a rich variety of single and two-mode dynamical scenarios, which are reproduced
with remarkable accuracy by a four dimensional rate equation model. Numerical
bifurcation analysis reveals the importance of torus bifurcations in mediating
transitions to antiphase dynamics and of saddle-node of limit cycle
bifurcations in switching of the dynamics between single and two-mode regimes.Comment: 7 pages, 9 figure
X-ray and UV observations of V751 Cyg in an optical high state
Aims: The VY Scl system (anti-dwarf nova) V751 Cyg is examined following a
claim of a super-soft spectrum in the optical low state. Methods: A
serendipitous XMM-Newton X-ray observation and, 21 months later, Swift X-ray
and UV observations, have provided the best such data on this source so far.
These optical high-state datasets are used to study the flux and spectral
variability of V751 Cyg. Results: Both the XMM-Newton and Swift data show
evidence for modulation of the X-rays for the first time at the known 3.467 hr
orbital period of V751 Cyg. In two Swift observations, taken ten days apart,
the mean X-ray flux remained unchanged, while the UV source brightened by half
a magnitude. The X-ray spectrum was not super-soft during the optical high
state, but rather due to multi-temperature optically thin emission, with
significant (10^{21-22} cm^-2) absorption, which was higher in the observation
by Swift than that of XMM-Newton. The X-ray flux is harder at orbital minimum,
suggesting that the modulation is related to absorption, perhaps linked to the
azimuthally asymmetric wind absorption seen previously in H-alpha.Comment: 6 pages, 9 figures, accepted for publication in A&
Microbial oxidation of arsenite in a subarctic environment: diversity of arsenite oxidase genes and identification of a psychrotolerant arsenite oxidiser
Background: Arsenic is toxic to most living cells. The two soluble inorganic forms of arsenic are arsenite (+3) and arsenate (+5), with arsenite the more toxic. Prokaryotic metabolism of arsenic has been reported in both thermal and moderate environments and has been shown to be involved in the redox cycling of arsenic. No arsenic metabolism (either dissimilatory arsenate reduction or arsenite oxidation) has ever been reported in cold environments (i.e. < 10°C).
Results: Our study site is located 512 kilometres south of the Arctic Circle in the Northwest Territories, Canada in an inactive gold mine which contains mine waste water in excess of 50 mM arsenic. Several thousand tonnes of arsenic trioxide dust are stored in underground chambers and microbial biofilms grow on the chamber walls below seepage points rich in arsenite-containing solutions. We compared the arsenite oxidisers in two subsamples (which differed in arsenite concentration) collected from one biofilm. 'Species' (sequence) richness did not differ between subsamples, but the relative importance of the three identifiable clades did. An arsenite-oxidising bacterium (designated GM1) was isolated, and was shown to oxidise arsenite in the early exponential growth phase and to grow at a broad range of temperatures (4-25°C). Its arsenite oxidase was constitutively expressed and functioned over a broad temperature range.
Conclusions: The diversity of arsenite oxidisers does not significantly differ from two subsamples of a microbial biofilm that vary in arsenite concentrations. GM1 is the first psychrotolerant arsenite oxidiser to be isolated with the ability to grow below 10°C. This ability to grow at low temperatures could be harnessed for arsenic bioremediation in moderate to cold climates
The SSS phase of RS Ophiuchi observed with Chandra and XMM-Newton I.: Data and preliminary Modeling
The phase of Super-Soft-Source (SSS) emission of the sixth recorded outburst
of the recurrent nova RS Oph was observed twice with Chandra and once with
XMM-Newton. The observations were taken on days 39.7, 54.0, and 66.9 after
outburst. We confirm a 35-sec period on day 54.0 and found that it originates
from the SSS emission and not from the shock. We discus the bound-free
absorption by neutral elements in the line of sight, resonance absorption lines
plus self-absorbed emission line components, collisionally excited emission
lines from the shock, He-like intersystem lines, and spectral changes during an
episode of high-amplitude variability. We find a decrease of the oxygen K-shell
absorption edge that can be explained by photoionization of oxygen. The
absorption component has average velocities of -1286+-267 km/s on day 39.7 and
of -771+-65 km/s on day 66.9. The wavelengths of the emission line components
are consistent with their rest wavelengths as confirmed by measurements of
non-self absorbed He-like intersystem lines. We have evidence that these lines
originate from the shock rather than the outer layers of the outflow and may be
photoexcited in addition to collisional excitations. We found collisionally
excited emission lines that are fading at wavelengths shorter than 15A that
originate from the radiatively cooling shock. On day 39.5 we find a systematic
blue shift of -526+-114 km/s from these lines. We found anomalous He-like f/i
ratios which indicates either high densities or significant UV radiation near
the plasma where the emission lines are formed. During the phase of strong
variability the spectral hardness light curve overlies the total light curve
when shifted by 1000sec. This can be explained by photoionization of neutral
oxygen in the line of sight if the densities of order 10^{10}-10^{11} cm^{-3}.Comment: 16 pages, 10 figures, 4 tables. Accepted by ApJ; v2: Co-author
Woodward adde
- …