31 research outputs found
Elevated titanium levels in Iraqi children with neurodevelopmental disorders echo findings in occupation soldiers
Controlling Motion at the Nanoscale: Rise of the Molecular Machines
© 2015 American Chemical Society. As our understanding and control of intra- and intermolecular interactions evolve, ever more complex molecular systems are synthesized and assembled that are capable of performing work or completing sophisticated tasks at the molecular scale. Commonly referred to as molecular machines, these dynamic systems comprise an astonishingly diverse class of motifs and are designed to respond to a plethora of actuation stimuli. In this Review, we outline the conditions that distinguish simple switches and rotors from machines and draw from a variety of fields to highlight some of the most exciting recent examples of opportunities for driven molecular mechanics. Emphasis is placed on the need for controllable and hierarchical assembly of these molecular components to display measurable effects at the micro-, meso-, and macroscales. As in Nature, this strategy will lead to dramatic amplification of the work performed via the collective action of many machines organized in linear chains, on functionalized surfaces, or in three-dimensional assemblies. (Figure Presented)
Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction
The reduction of carbon dioxide to renewable fuels and feedstocks offers opportunities for large-scale, long-term energy storage. The synthesis of efficient CO2 reduction electrocatalysts with high C2:C1 selectivity remains a field of intense interest. Here we present electro-redeposition, the dissolution and redeposition of copper from a sol-gel, to enhance copper catalysts in terms of their morphology, oxidation state and consequent performance. We utilized in situ soft X-ray absorption spectroscopy to track the oxidation state of copper under CO2 reduction conditions with time resolution. The sol-gel material slows the electrochemical reduction of copper, enabling control over nanoscale morphology and the stabilization of Cu+ at negative potentials. CO2 reduction experiments, in situ X-ray spectroscopy and density functional theory simulations revealed the beneficial interplay between sharp morphologies and Cu+ oxidation state. The catalyst exhibits a partial ethylene current density of 160 mA cm-2 (-1.0 V versus reversible hydrogen electrode) and an ethylene/methane ratio of 200
Recommended from our members
Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction
The reduction of carbon dioxide to renewable fuels and feedstocks offers opportunities for large-scale, long-term energy storage. The synthesis of efficient CO2 reduction electrocatalysts with high C2:C1 selectivity remains a field of intense interest. Here we present electro-redeposition, the dissolution and redeposition of copper from a sol-gel, to enhance copper catalysts in terms of their morphology, oxidation state and consequent performance. We utilized in situ soft X-ray absorption spectroscopy to track the oxidation state of copper under CO2 reduction conditions with time resolution. The sol-gel material slows the electrochemical reduction of copper, enabling control over nanoscale morphology and the stabilization of Cu+ at negative potentials. CO2 reduction experiments, in situ X-ray spectroscopy and density functional theory simulations revealed the beneficial interplay between sharp morphologies and Cu+ oxidation state. The catalyst exhibits a partial ethylene current density of 160 mA cm-2 (-1.0 V versus reversible hydrogen electrode) and an ethylene/methane ratio of 200
Recommended from our members
A Surface Reconstruction Route to High Productivity and Selectivity in CO2 Electroreduction toward C2+ Hydrocarbons
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Electrochemical carbon dioxide reduction (CO2) is a promising technology to use renewable electricity to convert CO2 into valuable carbon-based products. For commercial-scale applications, however, the productivity and selectivity toward multi-carbon products must be enhanced. A facile surface reconstruction approach that enables tuning of CO2-reduction selectivity toward C2+ products on a copper-chloride (CuCl)-derived catalyst is reported here. Using a novel wet-oxidation process, both the oxidation state and morphology of Cu surface are controlled, providing uniformity of the electrode morphology and abundant surface active sites. The Cu surface is partially oxidized to form an initial Cu (I) chloride layer which is subsequently converted to a Cu (I) oxide surface. High C2+ selectivity on these catalysts are demonstrated in an H-cell configuration, in which 73% Faradaic efficiency (FE) for C2+ products is reached with 56% FE for ethylene (C2H4) and overall current density of 17 mA cm-2. Thereafter, the method into a flow-cell configuration is translated, which allows operation in a highly alkaline medium for complete suppression of CH4 production. A record C2+ FE of ≈84% and a half-cell power conversion efficiency of 50% at a partial current density of 336 mA cm-2 using the reconstructed Cu catalyst are reported
In situ synthesis of energetic metal–organic frameworks [Cd5(Mtta)9]n film exhibiting excellent ignition capability
Photoinduced reversible switching of porosity in molecular crystals based on star-shaped azobenzene tetramers
The development of solid materials that can be reversibly interconverted by light between forms with different physicochemical properties is of great interest for separation, catalysis, optoelectronics, holography, mechanical actuation and solar energy conversion. Here, we describe a series of shape-persistent azobenzene tetramers that form porous molecular crystals in their E-configuration, the porosity of which can be tuned by changing the peripheral substituents on the molecule. Efficient E -> Z photoisomerization of the azobenzene units takes place in the solid state and converts the crystals into a non-porous amorphous melt phase. Crystallinity and porosity are restored upon Z -> E isomerization promoted by visible light irradiation or heating. We demonstrate that the photoisomerization enables reversible on/off switching of optical properties such as birefringence as well as the capture of CO2 from the gas phase. The linear design, structural versatility and synthetic accessibility make this new family of materials potentially interesting for technological applications
