CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
A Surface Reconstruction Route to High Productivity and Selectivity in CO2 Electroreduction toward C2+ Hydrocarbons
Authors
T Burdyny
OS Bushuyev
+10 more
P De Luna
CT Dinh
FP García de Arquer
MG Kibria
R Quintero-Bermudez
MB Ross
EH Sargent
A Seifitokaldani
D Sinton
P Yang
Publication date
6 December 2018
Publisher
eScholarship, University of California
Abstract
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Electrochemical carbon dioxide reduction (CO2) is a promising technology to use renewable electricity to convert CO2 into valuable carbon-based products. For commercial-scale applications, however, the productivity and selectivity toward multi-carbon products must be enhanced. A facile surface reconstruction approach that enables tuning of CO2-reduction selectivity toward C2+ products on a copper-chloride (CuCl)-derived catalyst is reported here. Using a novel wet-oxidation process, both the oxidation state and morphology of Cu surface are controlled, providing uniformity of the electrode morphology and abundant surface active sites. The Cu surface is partially oxidized to form an initial Cu (I) chloride layer which is subsequently converted to a Cu (I) oxide surface. High C2+ selectivity on these catalysts are demonstrated in an H-cell configuration, in which 73% Faradaic efficiency (FE) for C2+ products is reached with 56% FE for ethylene (C2H4) and overall current density of 17 mA cm-2. Thereafter, the method into a flow-cell configuration is translated, which allows operation in a highly alkaline medium for complete suppression of CH4 production. A record C2+ FE of ≈84% and a half-cell power conversion efficiency of 50% at a partial current density of 336 mA cm-2 using the reconstructed Cu catalyst are reported
Similar works
Full text
Available Versions
Sustaining member
eScholarship - University of California
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:escholarship.org:ark:/1303...
Last time updated on 25/12/2021