2,278 research outputs found

    Umklapp collisions and center of mass oscillation of a trapped Fermi gas

    Full text link
    Starting from the the Boltzmann equation, we study the center of mass oscillation of a harmonically trapped normal Fermi gas in the presence of a one-dimensional periodic potential. We show that for values of the the Fermi energy above the first Bloch band the center of mass motion is strongly damped in the collisional regime due to umklapp processes. This should be contrasted with the behaviour of a superfluid where one instead expects the occurrence of persistent Josephson-like oscillations.Comment: 11 pages, 3 figures, corrected typo

    Sound propagation and oscillations of a superfluid Fermi gas in the presence of a 1D optical lattice

    Full text link
    We develop the hydrodynamic theory of Fermi superfluids in the presence of a periodic potential. The relevant parameters governing the propagation of sound (compressibility and effective mass) are calculated in the weakly interacting BCS limit. The conditions of stability of the superfluid motion with respect to creation of elementary excitations are discussed. We also evaluate the frequency of the center of mass oscillation when the superfluid gas is additionally confined by a harmonic trap.Comment: Version accepted in Phys. Rev. A. It contains a discussion on the dynamical instability of Fermi superfluids in optical lattice

    Multimer formation in 1D two-component gases and trimer phase in the asymmetric attractive Hubbard model

    Get PDF
    We consider two-component one-dimensional quantum gases at special imbalanced commensurabilities which lead to the formation of multimer (multi-particle bound-states) as the dominant order parameter. Luttinger liquid theory supports a mode-locking mechanism in which mass (or velocity) asymmetry is identified as the key ingredient to stabilize such states. While the scenario is valid both in the continuum and on a lattice, the effects of umklapp terms relevant for densities commensurate with the lattice spacing are also mentioned. These ideas are illustrated and confronted with the physics of the asymmetric (mass-imbalanced) fermionic Hubbard model with attractive interactions and densities such that a trimer phase can be stabilized. Phase diagrams are computed using density-matrix renormalization group techniques, showing the important role of the total density in achieving the novel phase. The effective physics of the trimer gas is as well studied. Lastly, the effect of a parabolic confinement and the emergence of a crystal phase of trimers are briefly addressed. This model has connections with the physics of imbalanced two-component fermionic gases and Bose-Fermi mixtures as the latter gives a good phenomenological description of the numerics in the strong-coupling regime.Comment: 17 pages, 15 figure

    Emergence of superfluid transport in a dynamical system of ultracold atoms

    Full text link
    The dynamics of a Bose-Einstein condensate is studied theoretically in a combined periodic plus harmonic external potential. Different dynamical regimes of stable and unstable collective dipole and Bloch oscillations are analysed in terms of a quantum mechanical pendulum model. Nonlinear interactions are shown to counteract quantum-mechanical dephasing and lead to phase-coherent, superfluid transport

    Failed Back Surgery Syndrome: A Review Article

    Get PDF
    Postsurgical spine syndrome is becoming an increasingly common challenge for clinicians who deal with spinal disorders owing to the expanding indications for spinal surgery and the aging world population. A multidisciplinary approach is most appropriate for patients who are unlikely to benefit from further formal surgical intervention. Anticonvulsant medications are effective in managing neuropathic pain after surgery, whereas opioids are rarely beneficial. Neuromodulation via a surgically implanted dorsal column neurostimulator is gaining popularity owing to its substantial superiority over conventional medical management and/or further surgical intervention. However, considering that prevention is always better than cure, spinal surgeons need to be well aware of the many poor prognostic indicators for spinal surgery, particularly psychosocial overlay
    corecore