2,144 research outputs found

    Return times, recurrence densities and entropy for actions of some discrete amenable groups

    Full text link
    Results of Wyner and Ziv and of Ornstein and Weiss show that if one observes the first k outputs of a finite-valued ergodic process, then the waiting time until this block appears again is almost surely asymptotic to 2hk2^{hk}, where hh is the entropy of the process. We examine this phenomenon when the allowed return times are restricted to some subset of times, and generalize the results to processes parameterized by other discrete amenable groups. We also obtain a uniform density version of the waiting time results: For a process on ss symbols, within a given realization, the density of the initial kk-block within larger nn-blocks approaches 2hk2^{-hk}, uniformly in n>skn>s^k, as kk tends to infinity. Again, similar results hold for processes with other indexing groups.Comment: To appear in Journal d'Analyse Mathematiqu

    Classification of minimal actions of a compact Kac algebra with amenable dual

    Full text link
    We show the uniqueness of minimal actions of a compact Kac algebra with amenable dual on the AFD factor of type II1_1. This particularly implies the uniqueness of minimal actions of a compact group. Our main tools are a Rohlin type theorem, the 2-cohomology vanishing theorem, and the Evans-Kishimoto type intertwining argument.Comment: 68 pages, Introduction rewritten; minor correction

    Sharp error terms for return time statistics under mixing conditions

    Get PDF
    We describe the statistics of repetition times of a string of symbols in a stochastic process. Denote by T(A) the time elapsed until the process spells the finite string A and by S(A) the number of consecutive repetitions of A. We prove that, if the length of the string grows unbondedly, (1) the distribution of T(A), when the process starts with A, is well aproximated by a certain mixture of the point measure at the origin and an exponential law, and (2) S(A) is approximately geometrically distributed. We provide sharp error terms for each of these approximations. The errors we obtain are point-wise and allow to get also approximations for all the moments of T(A) and S(A). To obtain (1) we assume that the process is phi-mixing while to obtain (2) we assume the convergence of certain contidional probabilities

    Orbit equivalence rigidity for ergodic actions of the mapping class group

    Full text link
    We establish orbit equivalence rigidity for any ergodic, essentially free and measure-preserving action on a standard Borel space with a finite positive measure of the mapping class group for a compact orientable surface with higher complexity. We prove similar rigidity results for a finite direct product of mapping class groups as well.Comment: 11 pages, title changed, a part of contents remove

    Quantum criticality around metal-insulator transitions of strongly correlated electrons

    Full text link
    Quantum criticality of metal-insulator transitions in correlated electron systems is shownto belong to an unconventional universality class with violation of Ginzburg-Landau-Wilson(GLW) scheme formulated for symmetry breaking transitions. This unconventionality arises from an emergent character of the quantum critical point, which appears at the marginal point between the Ising-type symmetry breaking at nonzero temperatures and the topological transition of the Fermi surface at zero temperature. We show that Hartree-Fock approximations of an extended Hubbard model on square latticesare capable of such metal-insulator transitions with unusual criticality under a preexisting symmetry breaking. The obtained universality is consistent with the scaling theory formulated for Mott transition and with a number of numerical results beyond the mean-field level, implying that the preexisting symmetry breaking is not necessarily required for the emergence of this unconventional universality. Examinations of fluctuation effects indicate that the obtained critical exponents remain essentially exact beyond the mean-field level. Detailed analyses on the criticality, containing diverging carrier density fluctuations around the marginal quantum critical point, are presented from microscopic calculations and reveal the nature as quantum critical "opalescence". Analyses on crossovers between GLW type at nonzero temperature and topological type at zero temperature show that the critical exponents observed in (V,Cr)2O3 and kappa-ET-type organic conductor provide us with evidences for the existence of the present marginal quantum criticality.Comment: 24 pages, 19 figure

    Shuffling cards, factoring numbers, and the quantum baker's map

    Full text link
    It is pointed out that an exactly solvable permutation operator, viewed as the quantization of cyclic shifts, is useful in constructing a basis in which to study the quantum baker's map, a paradigm system of quantum chaos. In the basis of this operator the eigenfunctions of the quantum baker's map are compressed by factors of around five or more. We show explicitly its connection to an operator that is closely related to the usual quantum baker's map. This permutation operator has interesting connections to the art of shuffling cards as well as to the quantum factoring algorithm of Shor via the quantum order finding one. Hence we point out that this well-known quantum algorithm makes crucial use of a quantum chaotic operator, or at least one that is close to the quantization of the left-shift, a closeness that we also explore quantitatively.Comment: 12 pgs. Substantially elaborated version, including a new route to the quantum bakers map. To appear in J. Phys.

    Einstein's fluctuation formula. A historical overview

    Get PDF
    A historical overview is given on the basic results which appeared by the year 1926 concerning Einstein's fluctuation formula of black-body radiation, in the context of light-quanta and wave-particle duality. On the basis of the original publications (from Planck's derivation of the black-body spectrum and Einstein's introduction of the photons up to the results of Born, Heisenberg and Jordan on the quantization of a continuum) a comparative study is presented on the first line of thoughts that led to the concept of quanta. The nature of the particle-like fluctuations and the wave-like fluctuations are analysed by using several approaches. With the help of the classical probability theory, it is shown that the infinite divisibility of the Bose distribution leads to the new concept of classical poissonian photo-multiplets or to the binary photo-multiplets of fermionic character. As an application, Einstein's fluctuation formula is derived as a sum of fermion type fluctuations of the binary photo-multiplets.Comment: 34 page

    Phase behavior of colloidal suspensions with critical solvents in terms of effective interactions

    Full text link
    We study the phase behavior of colloidal suspensions the solvents of which are considered to be binary liquid mixtures undergoing phase segregation. We focus on the thermodynamic region close to the critical point of the accompanying miscibility gap. There, due to the colloidal particles acting as cavities in the critical medium, the spatial confinements of the critical fluctuations of the corresponding order parameter result in the effective, so-called critical Casimir forces between the colloids. Employing an approach in terms of effective, one-component colloidal systems, we explore the possibility of phase coexistence between two phases of colloidal suspensions, one being rich and the other being poor in colloidal particles. The reliability of this effective approach is discussed
    corecore