3,113 research outputs found

    Resolution of Cosmological Singularities

    Get PDF
    We show that a class of 3+1 dimensional Friedmann-Robertson-Walker cosmologies can be embedded within a variety of solutions of string theory. In some realizations the apparent singularities associated with the big bang or big crunch are resolved at non-singular horizons of higher-dimensional quasi-black hole solutions (with compactified real time); in others plausibly they are resolved at D-brane bound states having no conventional space-time interpretation.Comment: 11 pages, latex. Two references added, one typo correcte

    GIS-assisted modelling for debris flow hazard assessment based on the events of May 1998 in the area of Sarno, Southern Italy. II: Velocity and Dynamic Pressure

    Get PDF
    The velocity and dynamic pressure of debris flows are critical determinants of the impact of these natural phenomena on infrastructure. Therefore, the prediction of these parameters is critical for hazard assessment and vulnerability analysis. We present here an approach to predict the velocity of debris flows on the basis of the energy line concept. First, we obtained empirically and field-based estimates of debris flow peak discharge, mean velocity at peak discharge and velocity, at channel bends and within the fans of ten of the debris flow events that occurred in May 1998 in the area of Sarno, Southern Italy. We used this data to calibrate regression models that enable the prediction of velocity as a function of the vertical distance between the energy line and the surface. Despite the complexity in morphology and behaviour of these flows, the statistical fits were good and the debris flow velocities can be predicted with an associated uncertainty of less than 30% and less than 3 m s-1. We wrote code in Visual Basic for Applications (VBA) that runs within ArcGIS® to implement the results of these calibrations and enable the automatic production of velocity and dynamic pressure maps. The collected data and resulting empirical models constitute a realistic basis for more complex numerical modelling. In addition, the GIS implementation constitutes a useful decision-support tool for real-time hazard mitigation. Copyright © 2008 John Wiley & Sons, Ltd

    Arabidopsis \u3ci\u3eGLABROUS1\u3c/i\u3e Gene Requires Downstream Sequences for Function

    Get PDF
    The Arabidopsis GLABROUSl (GL1) gene is a myb gene homolog required for the initiation of trichome development. In situ hybridiration revealed that the highest levels of GL1 transcripts were present in developing trichomes. In contrast, previous work had shown that putative promoter sequences from the 5‘ noncoding region of the GL1 gene directed the expression of a β-glucuronidase (GUS) reporter gene only in stipules. Deletion analysis of the 3’ noncoding region of GL1 has identified an enhancer that is essential for GL1 function. Sequences fmm the region containing the enhancer, in conjunction with GL1 upstream sequences, direct the expression of a GUS reporter gene in leaf primordia and developing trichomes in addition to stipules, indicating that the downstream enhancer is required for the normal expression pattern of GL1

    Observations of Ultracool White Dwarfs

    Get PDF
    We present new spectroscopic and photometric measurements of the white dwarfs LHS 3250 and WD 0346+246. Along with F351-50, these white dwarfs are the coolest ones known, all with effective temperatures below 4000 K. Their membership in the Galactic halo population is discussed, and detailed comparisons of all three objects with new atmosphere models are presented. The new models consider the effects of mixed H/He atmospheres and indicate that WD 0346+246 and F351-50 have predominantly helium atmospheres with only traces of hydrogen. LHS 3250 may be a double degenerate whose average radiative temperature is between 2000 and 4000 K, but the new models fail to explain this object

    The lensing properties of subhaloes in massive elliptical galaxies in sterile neutrino cosmologies

    Get PDF
    We use high-resolution hydrodynamical simulations run with the EAGLE model of galaxy formation to study the differences between the properties of - and subsequently the lensing signal from - subhaloes of massive elliptical galaxies at redshift 0.2, in Cold and Sterile Neutrino (SN) Dark Matter models. We focus on the two 7 keV SN models that bracket the range of matter power spectra compatible with resonantly produced SN as the source of the observed 3.5 keV line. We derive an accurate parametrization for the subhalo mass function in these two SN models relative to cold dark matter (CDM), as well as the subhalo spatial distribution, density profile, and projected number density and the dark matter fraction in subhaloes. We create mock lensing maps from the simulated haloes to study the differences in the lensing signal in the framework of subhalo detection. We find that subhalo convergence is well described by a lognormal distribution and that signal of subhaloes in the power spectrum is lower in SN models with respect to CDM, at a level of 10-80 per cent, depending on the scale. However, the scatter between different projections is large and might make the use of power spectrum studies on the typical scales of current lensing images very difficult. Moreover, in the framework of individual detections through gravitational imaging a sample of ≃30 lenses with an average sensitivity of Msub = 5 × 107 M☉ would be required to discriminate between CDM and the considered sterile neutrino models

    GMRT Observations of the 2006 outburst of the Nova RS Ophiuchi: First detection of emission at radio frequencies < 1.4 GHz

    Full text link
    The first low radio frequency (<1.4 GHz) detection of the outburst of the recurrent nova RS Ophiuchi is presented in this letter. Radio emission was detected at 0.61 GHz on day 20 with a flux density of ~48 mJy and at 0.325 GHz on day 38 with a flux density of ~ 44 mJy. This is in contrast with the 1985 outburst when it was not detected at 0.327 GHz even on day 66. The emission at low radio frequencies is clearly non-thermal and is well-explained by a synchrotron spectrum of index alpha ~ -0.8 (S propto nu^alpha) suffering foreground absorption due to the pre-existing, ionized, warm, clumpy red giant wind. The absence of low frequency radio emission in 1985 and the earlier turn-on of the radio flux in the current outburst are interpreted as being due to higher foreground absorption in 1985 compared to that in 2006, suggesting that the overlying wind densities in 2006 are only ~30% of those in 1985.Comment: 14 pages, 1 figure. Accepted for publication in ApJ

    GIS-assisted modelling for debris flow hazard assessment based on the events of May 1998 in the area of Sarno, Southern Italy. Part II: Velocity and Dynamic Pressure

    Get PDF
    The velocity and dynamic pressure of debris flows are critical determinants of the impact of these natural phenomena on infrastructure. Therefore, the prediction of these parameters is critical for haz¬ard assessment and vulnerability analysis. We present here an approach to predict the velocity of de¬bris flows on the basis of the energy line concept. First, we obtained empirically- and field-based esti¬mates of debris flow peak discharge, mean velocity at peak discharge and velocity at channel bends and within the fans of ten of the debris flow events that occurred in May 1998 in the area of Sarno, Southern Italy. We used this data to calibrate regression models that enable the prediction of velocity as a function of the vertical distance between the energy line and the surface. Despite the complexity in morphology and behaviour of these flows, the statistical fits were good and the debris flow veloci¬ties can be predicted with an associated uncertainty of < 30% and < 3 m s-1. We wrote code in Visual Basic for Applications (VBA) that runs within ArcGIS ® to implement the results of these calibrations and enable the automatic production of velocity and dynamic pressure maps. The collected data and resulting empirical models constitute a realistic basis for more complex numerical modelling. In addi¬tion, the GIS-implementation constitutes a useful decision-support tool for real-time hazard mitigatio

    GIS-assisted modelling for debris flow hazard assessment based on the events of May 1998 in the area of Sarno, Southern Italy. Part I: Maximum run-out

    Get PDF
    Based on the debris flow events that occurred in May 1998 in the area of Sarno, Southern Italy, this paper presents an approach to simulate debris flow maximum run-out. On the basis of the flow source areas and an average thickness of 1.2 m of the scarps, we estimated debris flow volumes of the order of 104 and 105 m3. Flow mobility ratios ( H/L) derived from the x,y,z coordinates of the lower-most limit of the source areas (i.e. apex of the alluvial fan) and the distal limit of the flows ranged between 0.27 and 0.09. We performed regression analyses that showed a good correlation between the estimated flow volumes and mobility ratios. This paper presents a methodology for predicting maximum run-out of future debris flow events, based on the developed empirical relationship. We implemented the equation that resulted from the calibration as a set of GIS-macros written in Visual Basic for Applications (VBA) and running within ArcGIS. We carried out sensitivity analyses and observed that hazard mapping with this methodology should attempt to delineate hazard zones with a minimum horizontal resolution of 0.4 km. The developed procedure enables the rapid delineation of debris flow maximum extent within reasonable levels of uncertainty, it incorporates sensitivities and it facilitates hazard assessments via graphic-user interfaces and with modest computing resources

    Companion detection limits with adaptive optics coronagraphy

    Get PDF
    We presented a detailed observational study of the capabilities of the Palomar Adaptive Optics System and the PHARO near infrared camera in coronagraphic mode. The camera provides two different focal plane occulting masks consisting of completely opaque circular disks of diameter 0.433 arcsec and 0.965 arcsec, both within the cryogenic dewar. In addition, three different pupil plane apodizing masks (a.k.a. Lyot masks) are provided which downsize the beam. The six different combinations of Lyot mask and focal plane mask provide for different levels of suppression of the point spread function of a bright star centered on the focal plane mask. We obtained images of the bright nearby star Gliese 614 with all six different configurations in the K-band filter. Herein, we provide an analysis of the dynamic range achievable with these configurations. The dynamic range (the ratio of the primary star intensity to the intensity of the faintest point source detectable in the images) is a complicated function of not only the angular separation of the primary star and companion, but also of the azimuthal angle because of the complex point spread function of the primary star, which is also wavelength dependent. However, beyond 2.5 arcseconds from the star, regardless of the wavelength of the observation, the detection limit of a companion is simply the limiting magnitude of the image, as determined by the sensitivity of the PHARO camera. Within that radius, the dynamic range is at least 8 magnitudes at the 5(sigma) level and as high as 12 in a one second exposure. This represents a substantial gain over similar techniques without adaptive optics, which are generally limited to radii beyond two arcsec. We provide a quantitative discussion and recommendation for the optimal configuration along with a detailed comparison with recent theoretical predictions of AO coronagraphic performance
    corecore