25,509 research outputs found

    How Do I Address You? Modelling addressing behavior based on an analysis of a multi-modal corpora of conversational discourse

    Get PDF
    Addressing is a special kind of referring and thus principles of multi-modal referring expression generation will also be basic for generation of address terms and addressing gestures for conversational agents. Addressing is a special kind of referring because of the different (second person instead of object) role that the referent has in the interaction. Based on an analysis of addressing behaviour in multi-party face-to-face conversations (meetings, TV discussions as well as theater plays), we present outlines of a model for generating multi-modal verbal and non-verbal addressing behaviour for agents in multi-party interactions

    Exploiting `Subjective' Annotations

    Get PDF
    Many interesting phenomena in conversation can only be annotated as a subjective task, requiring interpretative judgements from annotators. This leads to data which is annotated with lower levels of agreement not only due to errors in the annotation, but also due to the differences in how annotators interpret conversations. This paper constitutes an attempt to find out how subjective annotations with a low level of agreement can profitably be used for machine learning purposes. We analyse the (dis)agreements between annotators for two different cases in a multimodal annotated corpus and explicitly relate the results to the way machine-learning algorithms perform on the annotated data. Finally we present two new concepts, namely `subjective entity' classifiers resp. `consensus objective' classifiers, and give recommendations for using subjective data in machine-learning applications.\u

    A comparison of addressee detection methods for multiparty conversations

    Get PDF
    Several algorithms have recently been proposed for recognizing addressees in a group conversational setting. These algorithms can rely on a variety of factors including previous conversational roles, gaze and type of dialogue act. Both statistical supervised machine learning algorithms as well as rule based methods have been developed. In this paper, we compare several algorithms developed for several different genres of muliparty dialogue, and propose a new synthesis algorithm that matches the performance of machine learning algorithms while maintaning the transparancy of semantically meaningfull rule-based algorithms

    Fast 2D-DCT implementations for VLIW processors

    Get PDF

    Weakly Restricted Stochastic Grammars

    Get PDF
    A new type of stochastic grammars is introduced for investigation: weakly restricted stochastic grammars. In this paper we will concentrate on the consistency problem. To find conditions for stochastic grammars to be consistent, the theory of multitype Galton-Watson branching processes and generating functions is of central importance.\ud The unrestricted stochastic grammar formalism generates the same class of languages as the weakly restricted formalism. The inside-outside algorithm is adapted for use with weakly restricted grammars

    First- and last-year experience: assessment, learning and teaching on a top-up degree

    Get PDF
    corecore