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Abstract - This paper analyzes various fast 2D-DCT algorithms re- 
garding their suitability for VLIW processors. Operations for truncation 
or rounding which a re  usually neglected in proposals for fast algorithms 
have also been taken into consideration. Loeffler's algorithm with par- 
allel multiplications [l] was found to be most suitable due t o  its parallel 
structure. 

INTRODUCTION 

The Discrete Cosine Transform (DCT) forms the basic building block 
of many image and video coding standards including the recently finalized 
MPEG-4 standard. Together with motion estimation the ZD-DCT is one of 
the most computationally intensive algorithms in a video coder. Therefore, 
for high bit rate applications, the DCT has usually been realized in dedicated 
hardware. The high performance of recently introduced VLIW-type digital 
signal processors [2] permits the DCT to be implemented in software. 

This paper discusses properties of DCT algorithms that influence their 
performance on VLIW processors, such as arithmetic complexity, coniputa- 
tional structure and accuracy. Various approaches to  fast DCT algorithms 
are summarized and analyzed regarding their suitability for VLIW processors. 
Finally, performance results are discussed for implementations of selected al- 
gorithms on the Texas Instruments DSP TMS32OC6201. 

VLIW PROCESSORS 

VLIW (Very Long Instruction Word) processors achieve their high perfor- 
mance by exploiting instruction-level parallelism (ILP) [3] through multiple 
parallel functional units. The main task remains with the compiler or pro- 
grammer that has to optimize the data and control flow of a program with 
the aim to schedule as many operations as possible in parallel. 

DCT algorithms, as most other numeric algorithms, have a highly parallel 
data flow and no control flow except the loop structure. a t  all. Therefore they 
contain a high amount of instruction-level parallelism. Conventional digital 
signal processors, however, are not able to  exploit much of this parallelism. 
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PROPERTIES OF DCT ALGORITHMS 

A reduction in the number of arithmetic operations is often essential for 
both hardware and software implementations, but is not the only require- 
ment for a fast implementation. Another very important property of an 
algorithm is its computational structure. For hardware implementations the 
minimization of the number of multiplications and a regular structure are 
essential. However, for VLIW processors, a structure that is more suitable 
to  their architecture can easily outweigh the advantage of saving one or two 
multiplications. Because there are typically more functional units available 
for additions than for multiplications or shift operations, multiplications and 
shifts are compntationally more expensive. Shift operations which are re- 
quired in practical implementations for truncation/rounding of the results of 
fixed-point multiplications and normalization are usually neglected in many 
proposals of fast algorithms. Other resource requirements, such as the num- 
her OF registers, cannot be reflected in a measure of arithmetic complexity. 
For this purpose the structure of the algorithm has to he analyzed. 

The accuracy of the computation is determined by the number of hits of 
the multiplier. Cosine coefficients have to be converted into a fixed-point 
representation for which the number of hits can be chosen according to  the 
desired accuracy. For improved accuracy, results of multiplications can be 
rounded instead of just truncated. To further improve accuracy it is bene- 
ficial t o  keep the extended precision representation after a multiplication by 
rounding after summing up the products. 

FAST ALGORITHMS 

This section summarizes different approaches to fast DCT algorithms and 
analyses their suitability for VLIW processors. 

Direct 2D approaches, such as [4], have a lower arithmetic complexity 15, 61 
than row-column approaches but the processing of large data vectors causes 
register values to be stored temporarily in memory (register spilling) if the 
CPU does not have a sufficient number of registers. This can degrade exe- 
cution speed drastically. Also, the complex computational structure prevents 
an implementation in a simple loop structure which results in increased code 
size. 

Other approaches alter the cosine coefficient matrix in such a way that the 
number of multiplications and additions are reduced [7].  A further saving in 
the number of multiplications can be achieved by evaluating 2 x 2 sub-matrices 

Another method for computing a 2D-DCT is t o  first perform real-DFT’s on 
the columns and then on the rows. A complex ID-DFT is then established 
and rotations applied to obtain the 2D-DCT [Si. This is a kind of hybrid 
approach involving methods from the row-column and the direct 2D approach. 
Therefore, the same problems as with other direct 2D approaches exist. 

as rotations [l]. 
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Polynomial approaches, such as [Y], map the DCT into complex polyno- 
mials. This representation of the DCT is similar to that of the DFT. A fast 
algorithm is then obtained through a polynomial transform similar to the 
FFT. This method can be used for 2D and row-column approaches. 

Recursive algorithms [lo] compute the DCT through lower order DCT’s, 
e.g. the %point DCT is computed using two 4-point DCT’s each of which 
are in turn computed using two 2-point DCT’s. However, due to  a required 
post-computation stage the overall number of stages is greater than that of 
other algorithms. 

In multiplication-free structures [111, multiplications have been replaced 
by shift operations. This might be beneficial for hardware implementations, 
but in the case of VLIW processors such an implementation would not fully 
utilize resources since the multiplier units would be left unused. Additionally, 
the computational complexity would increase because one multiplication is 
replaced with up to  6 shift operations. 

IMPLEMENTATION RESULTS 

Among the various algorithms analyzed [4, 9, 6, 7, 1, 10, 111, the algorithm 
by Loeffler et. a1 [I] with parallel multiplications (LLM PM) was found most 
suitable for VLIW processors. The standard algorithm (LLM) is shown in 
Figure 1. To obtain the version with parallel multiplications, the odd part 
(after the first stage) has to be replaced with the flow graph shown in Figure 
2. The algorithm requires 12 multiplications and 32 additions. Although 
there are algorithms with fewer multiplications and additions, such as the 
standard LLM algorithm, the suitability of the LLM PM algorithm becomes 
apparent if practical implementation issues are considered. 

Generally, in a row-column DCT algorithm without rounding shift oper- 
ations are required for two purposes: (1) truncation after fixed-point multi- 
plications and (2), at  the end of the column DCT, truncation to normalize 
the output values. To perform rounding instead of truncation, addition op- 
erations for adding rounding constants have to be introduced. 

The difference of the two LLM algorithms lies only in the odd part which 
shall now be compared to highlight the advantages of the PM structure. The 
LLM P M  algorithm requires 4 shift operations and, if rounding is desired, 
one rounding add. For the row DCT the shifts perform the truncation re- 
quired after the multiplications, and in the column DCT the shifts perform 
both functions, truncation and normalization. The cascaded multiplications 
structure of the standard LLM algorithm (Figure 1) requires two more shift 
operations and two more addition operations for rounding. The shifts are re- 
quired because the multiplier results from the rotation C1 are fed again into 
multipliers and need to be truncatcd before. Both, the LLM standard and 
PM algorithm were implemented on the TMS320C6201 in assembly language 
with and without rounding. Table 1 shows a summary of the characteristics 
and the performance of the implementations. 
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Figure 1: Signal flow graph of standard LLM algorithm [12] 

As can be seen in the table, the P M  algorithm requires fewer shift opera- 
tions than the standard algorithm because no multiplications are in cascade. 
Without rounding operations, the standard algorithm appears to have a slight 
advantage with its fewer additions and multiplications and therefore executes 
faster. However, considering the implementations with rounding, one can see 
that the advantage of fewer additions is no longer relevant if the additions 
for rounding are taken into account. Both implementations require 34 and 35 
additions for the row and column DCT, respectively. The disadvantage of the 
PM algorithm having one more multiplication is outweighed by the reduced 
number of shift operations. This makes the PM algorithm with 266 cycles 
clearly faster than the standard algorithm (297 cycles). As expected, the PM 
algorithm is superior in terms of accuracy because cascaded multipliers are 
avoided. The achieved accuracy of 0.0364 (mean square error) compares well 
with the accuracy of the floating-point implementation which is 0.0292. 

CONCLUSIONS 

For practical software implementations of fast DCT algorithms, other is- 
sues than multiplicative complexity have to be taken into account in order 
to achieve good performance. The structure of the algorithm determines the 
number of rounding (additions) and shift operations required. In particular 
shift operations, which can be implemented with almost no cost a t  all for 
VLSI, can be as computationally expensive as multiplications for software 
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7 
input 3 
from 2 
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Figure 2: Odd stage of Loeffler’s algorithm with parallel multiplications (LLM 
PM) 

Alg. Rounding Adds Mults Shifts Total Accuracy Cycles 
Std no 29 11 8/10 98 0.4845 255 
PM no 32 12 6/8 102 0.2968 272 
Std yes 34/35 11 8/10 109 0.0552 297 
PM yes 34/35 12 6/8 108 0.0364 266 
Float n/a 26 16 n/a 84 0.0292 n/a 

Table 1: Number of operations and performance results of implementations 
of the LLM standard and PM algorithm with and without rounding (the 
number of operations is the same for both row and column DCT unless stated 
as row/column) 

implementations. The structure of an algorithm also determines how efficient 
the resources of an VLIW processor can be exploited. As shown, resource 
requirements, the most important being the number and type of functional 
units and the number of registers, can be estimated through analysis of the 
algorithm structure, but only the actual implementation will reveal the true 
performance. 

References 

[l] C. Loeffler, A. Ligtenberg, and G. S. Moschyta, “Practical fast 1D DCT 
algorithms with 11 multiplications,” in IEEE ICASSP, vol. 2, pp. 988- 
991, February 1989. 

[2] P. Faraboschi, G. Desoli, and J. A. Fisher, “The latest word in digital 
and media processing,“ IEEE Signal Processing Magazine, vol. 15, no. 2, 
pp. 59-85, 1998. 

659 

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 5, 2009 at 09:34 from IEEE Xplore.  Restrictions apply.



[3] B. R. Rau and J. A. Fisher, “Instruction-level parallel processing: His- 
tory, overview, and perspective,” The Journal of Supereomputing, vol. 7, 
no. l j 2 ,  pp. 9-50, 1993. 

[4] N. I. Cho and S. U. Lee, “Fast algorithms and implementation of 2-D 
discrete cosine transform,” IEEE Trans. Circuits Syst., vol. 38, pp. 297- 
305, March 1991. 

[5] P. Dnhamel and H. H’Mida, “New Zn DCT algorithms suitable for VLSI 
implementation,” in Proc. ICASSP-87, pp. 1805-1808, 1987. 

[6] E. Feig and S. Winograd, “Fast algorithms for the discrete cosine trans- 
form,” IEEE Trans. Signal Processing, vol. 40, pp. 2174-2193, September 
1992. 

[7] F. A. McGovern, R. F. Woods, and M. Yan, “Novel VLSI implementation 
of (8x8) point 2-D DCT,” Electronic Letters, vol. 30, pp. 624-626, April 
1994. 

[8] M. Vetterli, P. Duhamel, and C. Guillemot, “TYade-off’s in the computa- 
tion of mono- and multi-dimensional DCT’s,” in ICASSP, pp. 999-1003, 
1990. 

[9] P. Duhamel and C. Guillemot, “Polynomial transform computation of 
2-D DCT,” in IEEE ICASSP, pp. 1515-1518,1990. 

[lo] H. S. Hou, “A fast recursive algorithm for computing the discrete cosine 
transform,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP- 
35, pp. 1455-1461, October 1987. 

[ll] C:Y. Lu and K.-A. Wen, “On the design of selective coefficient DCT 
module,” IEEE Trans. Circuits, Systems for Video Technology, vol. 8 ,  
pp. 143-146, April 1998. 

[la] H. R. Wu and D. Tan, “Implementation of Cho and Lee’s 2D DCT 
algorithm using LLM 1D DCT algorithm,” in 1997 IEEE Int. Workshop 
o n  Intelligent Signal Processing and Communications Systems, pp. 2.1- 
2.5, November 1997. Sect. 24. 

660 

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 5, 2009 at 09:34 from IEEE Xplore.  Restrictions apply.


