10 research outputs found

    Construction and response of a highly granular scintillator-based electromagnetic calorimeter

    Get PDF
    A highly granular electromagnetic calorimeter with scintillator strip readout is being developed for future linear collider experiments. A prototype of 21.5 푋0 depth and 180 × 180 mm2 transverse dimensions was constructed, consisting of 2160 individually read out 10 × 45 × 3 mm3 scintillator strips. This prototype was tested using electrons of 2–32 GeV at the Fermilab Test Beam Facility in 2009. Deviations from linear energy response were less than 1.1%, and the intrinsic energy resolution was determined to be (12.5±0.1(stat.)±0.4(syst.))%∕√퐾[GeV]⊕(1.2± 0.1(stat.)+0.6−0.7(syst.))%, where the uncertainties correspond to statistical and systematic sources, respectively

    Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    No full text
    We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE scintillator-tungsten analogue hadronic calorimeter. The data were recorded at the CERN Super Proton Synchrotron in 2011. The analysis includes measurements of the calorimeter response to each particle type as well as measurements of the energy resolution and studies of the longitudinal and radial shower development for selected particles. The results are compared to Geant4 simulations (version 9.6.p02). In the study of the energy resolution we include previously published data with beam momenta from 1 GeV to 10 GeV recorded at the CERN Proton Synchrotron in 2010
    corecore