7 research outputs found
Histone Deacetylase Inhibition Enhances Self Renewal and Cardioprotection by Human Cord Blood-Derived CD34+ Cells
Abstract
BACKGROUND:
Use of peripheral blood- or bone marrow-derived progenitors for ischemic heart repair is a feasible option to induce neo-vascularization in ischemic tissues. These cells, named Endothelial Progenitors Cells (EPCs), have been extensively characterized phenotypically and functionally. The clinical efficacy of cardiac repair by EPCs cells remains, however, limited, due to cell autonomous defects as a consequence of risk factors. The devise of "enhancement" strategies has been therefore sought to improve repair ability of these cells and increase the clinical benefit.
PRINCIPAL FINDINGS:
Pharmacologic inhibition of histone deacetylases (HDACs) is known to enhance hematopoietic stem cells engraftment by improvement of self renewal and inhibition of differentiation in the presence of mitogenic stimuli in vitro. In the present study cord blood-derived CD34(+) were pre-conditioned with the HDAC inhibitor Valproic Acid. This treatment affected stem cell growth and gene expression, and improved ischemic myocardium protection in an immunodeficient mouse model of myocardial infarction.
CONCLUSIONS:
Our results show that HDAC blockade leads to phenotype changes in CD34(+) cells with enhanced self renewal and cardioprotection
Poly(amidoamine) (PAMAM) dendritic nanostructures for controlled sitespecific delivery of acidic anti-inflammatory active ingredient
The purpose of the investigation was to evaluate the potential of polyamidoamine (PAMAM) dendrimer as nanoscale drug delivery units for controlled release of water insoluble and acidic anti-inflammatory drug. Flurbiprofen (FB) was selected as a model acidic anti-inflammatory drug. The aqueous solutions of 4.0 generation (G) PAMAM dendrimer in different concentrations were prepared and used further for solubilizing FB. Formation of dendrimer complex was characterized by Fourier transform infrared spectroscopy. The effect of pH on the solubility of FB in dendrimer was evaluated. Dendrimer formulations were further evaluated for in vitro release study and hemolytic toxicity. Pharmacokinetic and biodistribution were studied in male albino rats. Efficacy of dendrimer formulation was tested by carrageenan induced paw edema model. It was observed that the loaded drug displayed initial rapid release (more than 40% till 3rd hour) followed by rather slow release. Pharmacodynamic study revealed 75% inhibition at 4th hour that was maintained above 50% till 8th hour. The mean residence time (MRT) and terminal half-life (THF) of the dendritic formulation increased by 2-fold and 3-fold, respectively, compared with free drug. Hence, with dendritic system the drug is retained for longer duration in the biosystem with 5-fold greater distribution. It may be concluded that the drug-loaded dendrimers not only enhanced the solubility but also controlled the delivery of the bioactive with localized action at the site of inflammation
Chemoenzymatic Synthesis of Nitrogen Polymers with Biomedical Applications Catalyzed by Lipases
The application of Candida antarctica lipase B as catalyst in the synthesis of two examples of nitrogen polymers is described. Firstly, we report anovel linear polyamidoamine oligomer, obtained by polymerization of ethyl acrylate and N-methyl-1,3-diaminopropane, catalyzed by Candida antarctica lipase B immobilized on polypropylene. The second part of the chapter describes an efficient route for the synthesis of a novel β-peptoid oligomer with hydroxyalkyl pendant groups in the nitrogen atom, through the polymerization of ethyl N-(2-hydroxyethyl)-β-alaninate catalyzed by Candida antarctica lipase B physically adsorbed within a macroporous poly(methyl methacrylate-co-butyl methacrylate) resin.Moreover,two derivatives of the β-peptoid oligomer were prepared: by acetylation and by grafting polycaprolactone. This last process was performed through ring opening polymerization of caprolactone from the β-peptoid pendant hydroxyl groups and afforded a brush copolymer. The products were blended with polycaprolactone to make films by solvent casting. The inclusion of the acyl derivatives of the β-peptoid to polycaprolactone affected the morphology of the film yielding micro- and nanostructured patterns.The obtained products showed biomedical applications.Fil: Baldessari, Alicia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Unidad de Microanálisis y MĂ©todos FĂsicos en QuĂmica Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y MĂ©todos FĂsicos en QuĂmica Orgánica; ArgentinaFil: Garcia Liñares, Guadalupe Eugenia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Unidad de Microanálisis y MĂ©todos FĂsicos en QuĂmica Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y MĂ©todos FĂsicos en QuĂmica Orgánica; Argentin