9 research outputs found

    Digitalizing Crisis Management Training

    Get PDF
    Part 3: Crisis and Emergency ManagementInternational audienceThe ongoing digital transformation in government has enabled innovative changes in operational processes and service. However, while e-services and social media are widely adopted, earlier studies indicate that this transformation is still being awaited in other areas, such as crisis or disaster preparedness. Recent events such as the 2018 wildfires in several parts of Europe, as well as empirical research, highlight the need for more (systematic) training of local governments’ crisis management teams. Conventional training methods are time- and space-dependent and require long-term planning, making it complicated to increase the extent of training. In this interdisciplinary study, we report on the results from the Swedish-Norwegian CriseIT project that aimed to develop information systems (IS) for crisis management training. The purpose of the article is to describe information systems designed to support local governments’ crisis management training and to discuss how these artefacts could improve crisis management training practices

    Turbulence investigation in the roughness sub-layer of a near wall flow

    No full text
    The turbulence behaviour along a wall roughened by pyramidal elements was analysed in the region extending from the apex of the roughness elements up to the external limit of the roughness sub-layer. The data used for the analysis were obtained by particle image velocimetry technique. The rough wall turbulent boundary layer flow is characterized by a relatively low Reynolds number. All the results on the rough wall were compared with data referring to the canonical flow on a smooth wall turbulent boundary layer. Mean values and turbulence quantities for the two flows collapse when approaching the external limit of the roughness sublayer. The quadrant analysis of the Reynolds shear stress, in the region near the surface, shows that the contribution of the sweep motions is about equivalent for the two flows (except for wall distances lower than 40 viscous units). The contribution of the ejection motions appears to be more important over the smooth wall than over the rough wall with increasing differences approaching the wall. The probability density functions of the streamwise fluctuating velocity field for the rough wall case appear to be positively skewed in the zone very close to the pyramid apex, in contrast with the behavior observed for the smooth wall case at corresponding distances from the wall. The integral and Taylor scales for the rough wall case appear to be strongly reduced by the presence of the roughness, while the Kolmogorov microscale shows higher values

    Turbulent Flow Over Large Roughness Elements: Effect of Frontal and Plan Solidity on Turbulence Statistics and Structure

    Get PDF
    Wind-tunnel experiments were carried out on fully-rough boundary layers with large roughness (δ/h≈10 δ/h≈10, where h is the height of the roughness elements and δ δ is the boundary-layer thickness). Twelve different surface conditions were created by using LEGO™ bricks of uniform height. Six cases are tested for a fixed plan solidity (λ P λP) with variations in frontal density (λ F λF), while the other six cases have varying λ P λP for fixed λ F λF. Particle image velocimetry and floating-element drag-balance measurements were performed. The current results complement those contained in Placidi and Ganapathisubramani (J Fluid Mech 782:541–566, 2015), extending the previous analysis to the turbulence statistics and spatial structure. Results indicate that mean velocity profiles in defect form agree with Townsend’s similarity hypothesis with varying λ F λF, however, the agreement is worse for cases with varying λ P λP. The streamwise and wall-normal turbulent stresses, as well as the Reynolds shear stresses, show a lack of similarity across most examined cases. This suggests that the critical height of the roughness for which outer-layer similarity holds depends not only on the height of the roughness, but also on the local wall morphology. A new criterion based on shelter solidity, defined as the sheltered plan area per unit wall-parallel area, which is similar to the ‘effective shelter area’ in Raupach and Shaw (Boundary-Layer Meteorol 22:79–90, 1982), is found to capture the departure of the turbulence statistics from outer-layer similarity. Despite this lack of similarity reported in the turbulence statistics, proper orthogonal decomposition analysis, as well as two-point spatial correlations, show that some form of universal flow structure is present, as all cases exhibit virtually identical proper orthogonal decomposition mode shapes and correlation fields. Finally, reduced models based on proper orthogonal decomposition reveal that the small scales of the turbulence play a significant role in assessing outer-layer similarity

    Glutamate metabolism in the brain focusing on astrocytes

    No full text
    Metabolism of glutamate, the main excitatory neurotransmitter and precursor of GABA, is exceedingly complex and highly compartmentalized in brain. Maintenance of these neurotransmitter pools is strictly dependent on the de novo synthesis of glutamine in astrocytes which requires both the anaplerotic enzyme pyruvate carboxylase and glutamine synthetase. Glutamate is formed directly from glutamine by deamidation via phosphate activated glutaminase a reaction that also yields ammonia. Glutamate plays key roles linking carbohydrate and amino acid metabolism via the tricarboxylic acid (TCA) cycle, as well as in nitrogen trafficking and ammonia homeostasis in brain. The anatomical specialization of astrocytic endfeet enables these cells to rapidly and efficiently remove neurotransmitters from the synaptic cleft to maintain homeostasis, and to provide glutamine to replenish neurotransmitter pools in both glutamatergic and GABAergic neurons. Since the glutamate-glutamine cycle is an open cycle that actively interfaces with other pathways, the de novo synthesis of glutamine in astrocytes helps to maintain the operation of this cycle. The fine-tuned biochemical specialization of astrocytes allows these cells to respond to subtle changes in neurotransmission by dynamically adjusting their anaplerotic and glycolytic activities, and adjusting the amount of glutamate oxidized for energy relative to direct formation of glutamine, to meet the demands for maintaining neurotransmission. This chapter summarizes the evidence that astrocytes are essential and dynamic partners in both glutamatergic and GABAergic neurotransmission in brain

    Emerging Infections and Pertinent Infections Related to Travel for Patients with Primary Immunodeficiencies

    No full text
    corecore