169 research outputs found

    Constraints on particle acceleration sites in the Crab Nebula from relativistic MHD simulations

    Get PDF
    The Crab Nebula is one of the most efficient accelerators in the Galaxy and the only galactic source showing direct evidence of PeV particles. In spite of this, the physical process behind such effective acceleration is still a deep mystery. While particle acceleration, at least at the highest energies, is commonly thought to occur at the pulsar wind termination shock, the properties of the upstream flow are thought to be non-uniform along the shock surface, and important constraints on the mechanism at work come from exact knowledge of where along this surface particles are being accelerated. Here we use axisymmetric relativistic MHD simulations to obtain constraints on the acceleration site(s) of particles of different energies in the Crab Nebula. Various scenarios are considered for the injection of particles responsible for synchrotron radiation in the different frequency bands, radio, optical and X-rays. The resulting emission properties are compared with available data on the multi wavelength time variability of the inner nebula. Our main result is that the X-ray emitting particles are accelerated in the equatorial region of the pulsar wind. Possible implications on the nature of the acceleration mechanism are discussed.Comment: 12 pages, 7 figures, 2 table

    A comparison of radome- and astrodome-enclosed large radio telescopes at millimeter wavelengths: The Large Millimeter Telescope

    Full text link
    We present a systematic comparison of the main figures of merit for an open-air radio telescope and two different types of enclosed antennas: (1) an ordinary radome, with a metal space frame providing the required mechanical rigidity and a dielectric membrane, and (2) an “astrodome,” i.e., a corotating rigid dome with a large window covered by a tensile membrane structure. The analysis is limited to submillimeter and millimeter wavelengths and large (≳30 m) antenna/enclosure systems, where the window tensile structure is very unlikely to be removable and is supported by either a metal space frame or cable networks. As compared with previous studies of this type, here we concentrate on the specific effects that these large metallic support structures have on sensitive astronomical observations. In particular, we critically discuss how the wind-induced random motions of the metal space frame can limit the sensitivity of continuum observations, as a result of fluctuating shadowing and spillover effects combined with various beam-chopping techniques. Using the Large Millimeter Telescope as a benchmark, we provide baselines for future projects where a similar comparison is needed

    A Search for Formaldehyde 6 cm Emission toward Young Stellar Objects. II. H2CO and H110α Observations

    Get PDF
    We report the results of our second survey for Galactic H2CO maser emission toward young stellar objects. Using the GBT and the VLA in the A configuration we observed 58 star-forming regions and discovered the fifth H2CO 6 cm maser region in the Galaxy (G23.71-0.20). We have discussed the detection toward G23.71-0.20 in a previous paper. Here we present all the other results from our survey, including detection of H2CO absorption features toward 48 sources, detection of the H110α recombination line toward 29 sources, detection (including tentative detections) of the carbon recombination line C110α toward 14 sources, subarcsecond angular resolution images of 6 cm continuum emission toward five sources, and observations of the H2CO masers in IRAS 18566+0408 and NGC 7538. In the case of NGC 7538, we detected the two main H2CO maser components, and our observations confirm variability of the blueshifted component recently reported by Hoffman et al. The variability of both maser components in NGC 7538 could be caused by a shock wave that reached the redshifted component approximately 14 yr before reaching the blueshifted component. If that were the case, we would expect to detect an increase in the flux density rate of change of the blueshifted component sometime after the year 2009. Our data also support the use of H2CO/H110α observations as a tool to resolve the kinematic distance ambiguity of massive star-forming regions in the Galaxy

    Feasibility Study of Angular Super-Resolution with the Active Surface of a Radio Telescope

    Get PDF
    The concept of super-resolution refers to various methods for improving the angular resolution of an optical imaging system beyond the classical diffraction limit. A feasible method to design antennas and telescopes with angular resolution better than the diffraction limit consists of using variable transmittance pupils. The simplest transmittance pupils are binary phase shifts masks, also known as Toraldo Pupils, consisting of finite-width concentric coronae which modify the phase of the incident wavefront. In this work we present a preliminary feasibility study to determine if and how the active surface of the 32m Noto radio telescope can be used to modify the wavefront in the same way a Toraldo Pupil would do. Our preliminary analysis suggests that an ideal reflector with fully independent active panels would be able to achieve the super-resolution effect, but the real Noto active surface, where each actuator is connected to four distinct panels, adversely affects the operation of the simulated Toraldo Pupil. We are planning to apply the same analysis to the shaped active surface of the Sardinia Radio Telescope

    First Detection of an H2CO 6 cm Maser Flare: A Burst in IRAS 18566+0408

    Get PDF
    We report the discovery of a short-duration (less than 3 months) outburst of the H2CO 6 cm maser in IRAS 18566+0408 (G37.55+0.20). During the flare, the peak flux density of the maser increased by a factor of 4; after less than a month, it decayed to the preflare value. This is the first detection of a short, burstlike variability of an H2CO 6 cm maser. The maser shows an asymmetric line profile that is consistent with the superposition of two Gaussian components. We did not detect a change in the velocity or the line width of the Gaussian components during the flare. If the two Gaussian components trace two separate maser regions, then very likely an event outside the maser gas triggered simultaneous flares at two different locations
    • …
    corecore