18,314 research outputs found
The Mass Function of Field Galaxies at 0.4 < z < 1.2 Derived From the MUNICS K-Selected Sample
We derive the number density evolution of massive field galaxies in the
redshift range 0.4 < z < 1.2 using the K-band selected field galaxy sample from
the Munich Near-IR Cluster Survey (MUNICS). We rely on spectroscopically
calibrated photometric redshifts to determine distances and absolute magnitudes
in the rest-frame K-band. To assign mass-to-light ratios, we use two different
approaches. First, we use an approach which maximizes the stellar mass for any
K-band luminosity at any redshift. We take the mass-to-light ratio of a Simple
Stellar Population (SSP) which is as old as the universe at the galaxy's
redshift as a likely upper limit. Second, we assign each galaxy a mass-to-light
ratio by fitting the galaxy's colours against a grid of composite stellar
population models and taking their M/L. We compute the number density of
galaxies more massive than 2 x 10^10 h^-2 Msun, 5 x 10^10 h^-2 Msun, and 1 x
10^11 h^-2 Msun, finding that the integrated stellar mass function is roughly
constant for the lowest mass limit and that it decreases with redshift by a
factor of ~ 3 and by a factor of ~ 6 for the two higher mass limits,
respectively. This finding is in qualitative agreement with models of
hierarchical galaxy formation, which predict that the number density of ~ M*
objects is fairly constant while it decreases faster for more massive systems
over the redshift range our data probe.Comment: 6 pages, 2 figures, to appear in the proceedings of the ESO/USM
Workshop "The Mass of Galaxies at Low and High Redshift", Venice (Italy),
October 24-26, 200
Non-adiabatic collapse of a quasi-spherical radiating star
A model is proposed of a collapsing quasi-spherical radiating star with
matter content as shear-free isotropic fluid undergoing radial heat-flow with
outgoing radiation. To describe the radiation of the system, we have considered
both plane symmetric and spherical Vaidya solutions. Physical conditions and
thermodynamical relations are studied using local conservation of momentum and
surface red-shift. We have found that for existence of radiation on the
boundary, pressure on the boundary is not necessary.Comment: 8 Latex pages, No figures, Revtex styl
The Munich Near-Infrared Cluster Survey (MUNICS) - Number density evolution of massive field galaxies to z ~ 1.2 as derived from the K-band selected survey
We derive the number density evolution of massive field galaxies in the
redshift range 0.4 < z < 1.2 using the K-band selected field galaxy sample from
the Munich Near-IR Cluster Survey (MUNICS). We rely on spectroscopically
calibrated photometric redshifts to determine distances and absolute magnitudes
in the rest-frame K-band. To assign mass-to-light ratios, we use an approach
which maximizes the stellar mass for any K-band luminosity at any redshift. We
take the mass-to-light ratio, M/L_K, of a Simple Stellar Population (SSP) which
is as old as the universe at the galaxy's redshift as a likely upper limit.
This is the most extreme case of pure luminosity evolution and in a more
realistic model M/L_K will probably decrease faster with redshift due to
increased star formation. We compute the number density of galaxies more
massive than 2 10^10 h^-2 solar masses, 5 10^10 h^-2 solar masses, and 1 10^11
h^-2 solar masses, finding that the integrated stellar mass function is roughly
constant for the lowest mass limit and that it decreases with redshift by a
factor of roughly 3 and by a factor of roughly 6 for the two higher mass
limits, respectively. This finding is in qualitative agreement with models of
hierarchical galaxy formation, which predict that the number density of ~ M*
objects is fairly constant while it decreases faster for more massive systems
over the redshift range our data probe.Comment: 4 pages, 5 figures, accepted for publication in ApJ Letter
Recommended from our members
The gathering firestorm in southern Amazonia.
Wildfires, exacerbated by extreme weather events and land use, threaten to change the Amazon from a net carbon sink to a net carbon source. Here, we develop and apply a coupled ecosystem-fire model to quantify how greenhouse gas-driven drying and warming would affect wildfires and associated CO2 emissions in the southern Brazilian Amazon. Regional climate projections suggest that Amazon fire regimes will intensify under both low- and high-emission scenarios. Our results indicate that projected climatic changes will double the area burned by wildfires, affecting up to 16% of the region's forests by 2050. Although these fires could emit as much as 17.0 Pg of CO2 equivalent to the atmosphere, avoiding new deforestation could cut total net fire emissions in half and help prevent fires from escaping into protected areas and indigenous lands. Aggressive efforts to eliminate ignition sources and suppress wildfires will be critical to conserve southern Amazon forests
Large-Scale Structure in the NIR-Selected MUNICS Survey
The Munich Near-IR Cluster Survey (MUNICS) is a wide-area, medium-deep,
photometric survey selected in the K' band. The project's main scientific aims
are the identification of galaxy clusters up to redshifts of unity and the
selection of a large sample of field early-type galaxies up to z < 1.5 for
evolutionary studies. We created a Large Scale Structure catalog, using a new
structure finding technique specialized for photometric datasets, that we
developed on the basis of a friends-of-friends algorithm. We tested the
plausibility of the resulting galaxy group and cluster catalog with the help of
Color-Magnitude Diagrams (CMD), as well as a likelihood- and Voronoi-approach.Comment: 4 pages, to appear in "The Evolution of Galaxies III. From Simple
Approaches to Self-Consistent Models", proceedings of the 3rd EuroConference
on the evolution of galaxies, held in Kiel, Germany, July 16-20, 200
SUBSTITUTION OF NTO BY HTP IN A BIPROPELLANT RCS
The present article presents some theoretical considerations about the implications
due the change of the oxidizer in a bipropellant propulsion system. Preliminary
analysis conducted on the NTO/UDMH 400 N engine of a roll control system shows
that this engine could be capable of operation with HTP90 without significant
modification in the design. The new propellant combination is less toxic, can be
handled more easily, has a wider operational temperature range, and yields a more
amenable thermal environment from the combustion down to the exhaustion. Even
with a decrease in liquid film cooling, the HTP90/UDMH engine would present a
satisfactory reduction of the combustion chamber temperature and approximately the
same performance level of the original NTO/UDMH engine
- …