
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322390863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Open-architecture Robot Controller applied to Interaction Tasks 99

An Open-architecture Robot Controller applied to Interaction Tasks

A. Oliveira, E. De Pieri and U. Moreno

x

An Open-architecture Robot
Controller applied to

Interaction Tasks

A. Oliveira1, E. De Pieri2 and U. Moreno2

1Mechanical Engineering Department
University of Caxias do Sul (UCS)

2Department of Automation and Systems
 Federal University of Santa Catarina (UFSC)

 1-2Brazil

1. Introduction

Many current robotic applications are limited by the industry state of art of the
manipulators control algorithms. The inclusion of force and vision feedbacks, the possibility
of cooperation between two or more manipulators, the control of robots with irregular
topology will certainly enlarge the industrial robotics applications. The development of
control algorithms to this end brings the necessity of using open-architecture controllers.
Generally the robotic controllers are developed for position control, without accomplishing
integrally the requirements of tasks in which interactions with the environment occur.
Therefore, this is currently one of the main research areas in robotics, e.g., in (Abele et al.,
2007) is presented the identification of characteristics to an industrial robot to execute
machining applications. To consider this interaction the robot controller has to give priority
to the force control time response, because in the instant of end-effectors contact with the
surface, several forces act on the system. Depending on the speeds and the accelerations
involved in the process, damages or errors can occur. To avoid these effects, compliances are
inserted in tool or in surface of operation.
A new reference model for a control system functional architecture applied to open-
architecture robot controllers is presented. Where, this model is applied for integrally
development of a five-layer based open-architecture robotic controller for interaction tasks,
which uses parallel and distributed processing techniques, avoiding the necessity of
compliance in system, allowing a real-time processing of the application and the total
control of information. This architecture provides flexibility, the knowledge of all the
control structures and allows the user to modify all controller layers. The used controller
conception aims to fulfill with the following requirements: high capacity of processing, low
cost, connectivity with other systems, availability for the remote access, easiness of
maintenance, flexibility in the implementation, integration with a personal computer and
programming in high level.

5

www.intechopen.com

Advances in Robot Manipulators100

This chapter is organized as follows. Section 2 overviews the most relevant categories,
definitions and requirements of robot controllers. Section 3 details the reference model for
open-architecture controller development. Section 4 describes the robot retrofitting for
interactions tasks. Section 5 presents and discusses the experimental setup. Finally, Section 6
concludes the chapter and outlines future research and development directions.

2. Open-architecture Robot Controllers

Various open control architectures for industrial robots have already been developed by
robot and control manufacturers as well as in research labs. In (Lippiello et al., 2007) is
presented an open architecture for sensory feedback control of a dual-arm industrial robotic
cell for cooperation tasks. In (Macchelli & Melchiorri, 2007) is presented a real-time control
system based on RTAI-Linux operating system and developed for coupling of an advanced
end-effector. (Hong et al., 2001) develop a system of robot open control based on a reference
model OSACA. (Bona et al., 2001) propose a real-time architecture for robot control system
development based in real-time operating system for embedded systems, RTOS. In (Donald
& Dunlop, 2001) present a retrofitting of a path control system for a hydraulic robot based
on a FPGA executing the embedded operating system RTSS. The inexistence of a standard
methodology for architecture controller project difficult the development of high-openness
degree control system.
Most of the existing robot control open architectures are based on a standard PC hardware
and a standard operating system, because I/O boards and communication boards for robots
have a higher cost in relation to the similar boards for PCs. Another reason is the lack of
standardization of robot peripherals, with each manufacturer developing its own protocols
and interfaces, forcing the users to buy all the components of a single manufacturer (Lages
et al., 2003). Additionally, a PC based controller can be integrated more easily with many
commercially available add-on peripherals such as mass storage devices, Ethernet card and
other I/O devices. So, the facility to integrate other functionalities is a strong reason to use a
standard PC hardware in robot control open architectures.
Another reason is that the robot programming languages are, at low level, more similar to
the Assembly languages than to the modern high level languages and this may difficult
implementations (Lages et al., 2003). In a PC based controller standard software
development tools (e.g., Visual C++, Visual Basic or Delphi) can be used.

2.1 Definitions
The definition of open system, according to Technical Committee of Open Systems of IEEE
is “An open system provides capabilities that enable properly implemented applications to
run on a variety of platforms from multiple vendors, interoperate with other system
applications and present a consistent styler of interaction with the user”. A open-
architecture control system has the capacity to operate with the best components of different
manufacturers. What makes possible the easy integration of new system functionalities.
From user point of view, the “openness” of the systems consists in capabilities to integrate,
extend and reuse software modules in control systems (Lutz & Sperling, 1997). In (Pritschow
& Altintas, 2001) and (Nacsa, 2001) the “degree of openness” of a system is defined by some
criteria, as:

 Extendibility: A variable number of modules can be executed simultaneously in a same
platform, without causing conflicts, i.e., this characteristic depends mainly on the
operating system, that should accomplish a multi-task processing, and also of modules
coupling level, that should allow those operations.

 Interoperability: The modules work together efficiently and they can interchange data
in a defined way through logical and physical communication buses.

 Portability: The modules can be executed in different platforms without modifications,
maintaining their functionalities, i.e., they should conform software and hardware
standards to maintain the system compatibility with other platforms.

 Scalability: Depending on the user requirements, the module functionalities and
performance and size of the hardware, software and firmware can adapt for the system
optimization.

Those characteristics define the "degree of openness" of a system, how more extended and
refined, major will be the level of openness. For open-architecture controllers, one more
characteristic should be considered, the modularity.
 Modularity: The system is divided in specialized subsystems, called modules, that can

be substituted without significant modifications in system. This characteristic consists
of logical and physical system decomposition in small functional units.

2.2 Categories
The controllers are characterized by the freedom of access information or simply for “degree
of openness”. Usually, the control of several system modules (e.g., unit power and low level
control) is proprietary and cannot be modified by user, other levels are considered open
(e.g., communication interface and high-level control), i.e., they are based on hardware and
software standards with specifications of open interface.
In (Pritschow & Altintas, 2001), (Lutz & Sperling, 1997) and (Ford, 1994), the "degree of
openness" of a system is defined in agreement with access concept to controller layers, like
this, they can be classified in three categories:
 Proprietary: That system modality allows the access just to application layer, being

therefore, a closed system. In those systems is extremely difficult or impossible the
integration of external modules.

 Hybrid or Restricted: That category makes available the access to application layer and
a controlled access to operating system module. The operating system has a fixed
topology, however, allows small changes in control system modules (e.g., gains and
parameters).

 Open: Open-architecture systems allow integral access of application layers and
operating system modules, supplying a homogeneous vision of the system, allowing
the manipulation and modification of all modules that compose the system. Its offers
interchangeability, scalability, portability and interoperability.

2.3 Requirements
One of main requirements for a system to be characterized with open-architecture is the
necessity of the control functionalities be subdivided in small functional units with a solid
relationship among the subsystems. Consequently, the modularity becomes fundamental for
a control system to have an open-architecture (Pritschow & Altintas, 2001).

www.intechopen.com

An Open-architecture Robot Controller applied to Interaction Tasks 101

This chapter is organized as follows. Section 2 overviews the most relevant categories,
definitions and requirements of robot controllers. Section 3 details the reference model for
open-architecture controller development. Section 4 describes the robot retrofitting for
interactions tasks. Section 5 presents and discusses the experimental setup. Finally, Section 6
concludes the chapter and outlines future research and development directions.

2. Open-architecture Robot Controllers

Various open control architectures for industrial robots have already been developed by
robot and control manufacturers as well as in research labs. In (Lippiello et al., 2007) is
presented an open architecture for sensory feedback control of a dual-arm industrial robotic
cell for cooperation tasks. In (Macchelli & Melchiorri, 2007) is presented a real-time control
system based on RTAI-Linux operating system and developed for coupling of an advanced
end-effector. (Hong et al., 2001) develop a system of robot open control based on a reference
model OSACA. (Bona et al., 2001) propose a real-time architecture for robot control system
development based in real-time operating system for embedded systems, RTOS. In (Donald
& Dunlop, 2001) present a retrofitting of a path control system for a hydraulic robot based
on a FPGA executing the embedded operating system RTSS. The inexistence of a standard
methodology for architecture controller project difficult the development of high-openness
degree control system.
Most of the existing robot control open architectures are based on a standard PC hardware
and a standard operating system, because I/O boards and communication boards for robots
have a higher cost in relation to the similar boards for PCs. Another reason is the lack of
standardization of robot peripherals, with each manufacturer developing its own protocols
and interfaces, forcing the users to buy all the components of a single manufacturer (Lages
et al., 2003). Additionally, a PC based controller can be integrated more easily with many
commercially available add-on peripherals such as mass storage devices, Ethernet card and
other I/O devices. So, the facility to integrate other functionalities is a strong reason to use a
standard PC hardware in robot control open architectures.
Another reason is that the robot programming languages are, at low level, more similar to
the Assembly languages than to the modern high level languages and this may difficult
implementations (Lages et al., 2003). In a PC based controller standard software
development tools (e.g., Visual C++, Visual Basic or Delphi) can be used.

2.1 Definitions
The definition of open system, according to Technical Committee of Open Systems of IEEE
is “An open system provides capabilities that enable properly implemented applications to
run on a variety of platforms from multiple vendors, interoperate with other system
applications and present a consistent styler of interaction with the user”. A open-
architecture control system has the capacity to operate with the best components of different
manufacturers. What makes possible the easy integration of new system functionalities.
From user point of view, the “openness” of the systems consists in capabilities to integrate,
extend and reuse software modules in control systems (Lutz & Sperling, 1997). In (Pritschow
& Altintas, 2001) and (Nacsa, 2001) the “degree of openness” of a system is defined by some
criteria, as:

 Extendibility: A variable number of modules can be executed simultaneously in a same
platform, without causing conflicts, i.e., this characteristic depends mainly on the
operating system, that should accomplish a multi-task processing, and also of modules
coupling level, that should allow those operations.

 Interoperability: The modules work together efficiently and they can interchange data
in a defined way through logical and physical communication buses.

 Portability: The modules can be executed in different platforms without modifications,
maintaining their functionalities, i.e., they should conform software and hardware
standards to maintain the system compatibility with other platforms.

 Scalability: Depending on the user requirements, the module functionalities and
performance and size of the hardware, software and firmware can adapt for the system
optimization.

Those characteristics define the "degree of openness" of a system, how more extended and
refined, major will be the level of openness. For open-architecture controllers, one more
characteristic should be considered, the modularity.
 Modularity: The system is divided in specialized subsystems, called modules, that can

be substituted without significant modifications in system. This characteristic consists
of logical and physical system decomposition in small functional units.

2.2 Categories
The controllers are characterized by the freedom of access information or simply for “degree
of openness”. Usually, the control of several system modules (e.g., unit power and low level
control) is proprietary and cannot be modified by user, other levels are considered open
(e.g., communication interface and high-level control), i.e., they are based on hardware and
software standards with specifications of open interface.
In (Pritschow & Altintas, 2001), (Lutz & Sperling, 1997) and (Ford, 1994), the "degree of
openness" of a system is defined in agreement with access concept to controller layers, like
this, they can be classified in three categories:
 Proprietary: That system modality allows the access just to application layer, being

therefore, a closed system. In those systems is extremely difficult or impossible the
integration of external modules.

 Hybrid or Restricted: That category makes available the access to application layer and
a controlled access to operating system module. The operating system has a fixed
topology, however, allows small changes in control system modules (e.g., gains and
parameters).

 Open: Open-architecture systems allow integral access of application layers and
operating system modules, supplying a homogeneous vision of the system, allowing
the manipulation and modification of all modules that compose the system. Its offers
interchangeability, scalability, portability and interoperability.

2.3 Requirements
One of main requirements for a system to be characterized with open-architecture is the
necessity of the control functionalities be subdivided in small functional units with a solid
relationship among the subsystems. Consequently, the modularity becomes fundamental for
a control system to have an open-architecture (Pritschow & Altintas, 2001).

www.intechopen.com

Advances in Robot Manipulators102

The determination of module complexity should consider factors as the “degree of
openness” wanted and integration cost. Small modules supply a high-level openness, but
they increase the complexity and integration costs. A low modularity can drive for a high
demand of resources and to deteriorate the system performance, not allowing real-time data
articulation (Nacsa, 2001).
The system structuring through a modular interaction requests a detailed group of
relationship methods, composed by Application Programming Interfaces (i.e., these are a
group of routines and software standards for extern access of their functionalities). In open
control systems these interfaces need to be standardized (Pritschow & Altintas, 2001).
 The modular platforms encapsulate the operation system specific methods absorbing the
hardware, operating system and communication characteristics. What promotes a high level
data exchange, this abstraction requests a data mediation module, called middleware. These
data concatenation and adaptation points increase the portability and interoperability of
distributed applications in heterogeneous environments.

3. The Reference Model for Open-Architecture Robot Controllers

The reference model for a control system functional architecture presented in (Sciavicco &
Siciliano, 2000) has a priority focus in the control structure, little exploring the other levels of
robot controllers.
This work proposes a new reference model for a control system functional architecture
applied to open-architecture robot controller. The model is based on model of (Sciavicco &
Siciliano, 2000), however, it expands the approach for all controller levels, adapts their
layers in agreement with the standard ISO 7498-1 and considers the definition, categories,
requirements and tendencies for open-architecture controllers. The structure of the
proposed reference model is represented in Fig. 1, where the five hierarchical levels are
illustrated. To proceed, those layers will be described individually.

3.1 Task Layer
The task layer is responsible for industrial robot control tasks grouped in three categories:
trajectory planning, supervisory system and control law. Those operations are processed in
the central equipment of the system, usually a personal computer (PC). In remote control
operations, the operations can be divided in two software modules with relationship client-
server. The trajectory planning and supervisory system will be processed with smaller time
requirements in client, while the control structure will be processed in real time of
application in server.

3.2 Integration Layer
The adopted functional architecture hierarchical structure, together with its articulation into
different modules, suggests a hardware implementation that exploits distributed
computational resources interconnected by means of suitable communication channels. At
the integration layer, the information adaptation is accomplished (i.e., concatenation and
organization) incoming from several processors that compose the distributed system.

These operations supply to superior layer a heterogeneity vision of the system to sharing
resources. In this level, peripherals with high-level of abstraction (e.g., exteroceptive
sensors) are also appropriate in this level.

3.3 Communication Layer
At the communication layer, the interconnection of information among the system
processors is accomplished, usually using high-speed data transmission buses. The network
topology is indifferent, however, it is important the use of redundant ways for connection
among all intermediate points and the net central knot through the main bus and the
embedded systems interconnection by an alternative communication bus. Every system
interconnection accomplished in this layer is based in International Standard ISO/IEC 7498-1.

Fig. 1. Functional architecture of proposed reference model.

3.4 Interface Layer
The interface layer is composed by the embedded systems, i.e., dedicated hardware’s to
process specific task software (called firmware) encapsulated in internal storage memories.
This organizational structure divides the system in small hardware modules and
consequently, distributes the system processing. The processing distribution degree is

www.intechopen.com

An Open-architecture Robot Controller applied to Interaction Tasks 103

The determination of module complexity should consider factors as the “degree of
openness” wanted and integration cost. Small modules supply a high-level openness, but
they increase the complexity and integration costs. A low modularity can drive for a high
demand of resources and to deteriorate the system performance, not allowing real-time data
articulation (Nacsa, 2001).
The system structuring through a modular interaction requests a detailed group of
relationship methods, composed by Application Programming Interfaces (i.e., these are a
group of routines and software standards for extern access of their functionalities). In open
control systems these interfaces need to be standardized (Pritschow & Altintas, 2001).
 The modular platforms encapsulate the operation system specific methods absorbing the
hardware, operating system and communication characteristics. What promotes a high level
data exchange, this abstraction requests a data mediation module, called middleware. These
data concatenation and adaptation points increase the portability and interoperability of
distributed applications in heterogeneous environments.

3. The Reference Model for Open-Architecture Robot Controllers

The reference model for a control system functional architecture presented in (Sciavicco &
Siciliano, 2000) has a priority focus in the control structure, little exploring the other levels of
robot controllers.
This work proposes a new reference model for a control system functional architecture
applied to open-architecture robot controller. The model is based on model of (Sciavicco &
Siciliano, 2000), however, it expands the approach for all controller levels, adapts their
layers in agreement with the standard ISO 7498-1 and considers the definition, categories,
requirements and tendencies for open-architecture controllers. The structure of the
proposed reference model is represented in Fig. 1, where the five hierarchical levels are
illustrated. To proceed, those layers will be described individually.

3.1 Task Layer
The task layer is responsible for industrial robot control tasks grouped in three categories:
trajectory planning, supervisory system and control law. Those operations are processed in
the central equipment of the system, usually a personal computer (PC). In remote control
operations, the operations can be divided in two software modules with relationship client-
server. The trajectory planning and supervisory system will be processed with smaller time
requirements in client, while the control structure will be processed in real time of
application in server.

3.2 Integration Layer
The adopted functional architecture hierarchical structure, together with its articulation into
different modules, suggests a hardware implementation that exploits distributed
computational resources interconnected by means of suitable communication channels. At
the integration layer, the information adaptation is accomplished (i.e., concatenation and
organization) incoming from several processors that compose the distributed system.

These operations supply to superior layer a heterogeneity vision of the system to sharing
resources. In this level, peripherals with high-level of abstraction (e.g., exteroceptive
sensors) are also appropriate in this level.

3.3 Communication Layer
At the communication layer, the interconnection of information among the system
processors is accomplished, usually using high-speed data transmission buses. The network
topology is indifferent, however, it is important the use of redundant ways for connection
among all intermediate points and the net central knot through the main bus and the
embedded systems interconnection by an alternative communication bus. Every system
interconnection accomplished in this layer is based in International Standard ISO/IEC 7498-1.

Fig. 1. Functional architecture of proposed reference model.

3.4 Interface Layer
The interface layer is composed by the embedded systems, i.e., dedicated hardware’s to
process specific task software (called firmware) encapsulated in internal storage memories.
This organizational structure divides the system in small hardware modules and
consequently, distributes the system processing. The processing distribution degree is

www.intechopen.com

Advances in Robot Manipulators104

proportional at the utilization level of dedicated processors in system. The system
decomposition in task dedicated processors guarantees a fixed and minimum response time.

3.5 Physical Layer
The industrial manipulator physical access (i.e., actuators and proprioceptive sensors) occur
in physical layer, composed only by the input and output robot data channels. Usually, the
actuator activation is realized indirectly, because, the controller signs only access the unit
power that adapts this signs for the motors.

4. Reference Model applied to Interaction Tasks

Special requirement for robot controllers that includes force control
Generally the robotic controllers are developed for applications that require only position
control, and the robot end effector doesn't contact the workspace during its movement. The
interaction concept is related with the contact between robot and environment, where
generated force and torque profiles need to be controlled. In applications that need force
control, the end effector contacts some surface in its workspace and this interaction
generates contact forces that must be controlled in a way to fulfill the task correctly, without
damaging both, robot tools and the working objects.
The contact force intensities, originated by tool movements commanded by the robot
controller, depend on both, the tool rigidity and the object surface rigidity, and they must be
also controlled. A small tool movement could originate large force intensities in case the tool
and the object surface rigidity are large. It should be noted that by introducing compliance
to the tool we generate a delay in the application of the forces and this could be
unacceptable in some applications. Consequently, the system should have a small time
response to these forces, to prevent tool, robot or object damages. The use of high
performance systems is a requisite of controllers for application of force control.
Therefore, the reference model proposed was applied, considering the interaction tasks
requirements, for retrofit of old industrial manipulator. The resultant functional structure
for controller is presented in Fig. 2 and described as follows.

4.1 Task Layer for interaction tasks
The task layer has a mathematical environment prepared to make operations with matrices
in which the control law is stored. The information proceeding from the n joints are
available in matrices nx1 corresponding to the position vector , and the velocity vector ,
where the lines represent the joints. The force sensor data are stored in a matrix 6 x 1
called , which contains forces and moments data. The information to
be directed to the motors and encoders is stored in an n x 3 control matrix . In this layer the
user develops the control laws of position and/or force of the manipulator and it is possible
to carry through the task simulation.

Fig. 2. Functional architecture of proposed reference model applied to interaction tasks.

4.2 Integration Layer for interaction tasks
In the integration layer the concatenation and the organization of all the information coming
from the sensors and to be sent to the superior layer are done. In case of the inclusion of a
new hardware to the system, it is necessary to add its control structure to this layer. This is
carried through by a high-level application that manages the power unit and control unit.
Preventing any irregular movements and danger situations and controlling the components
of the lower level. In this software the controller's components can be activated or disabled
independently.

4.3 Communication Layer for interaction tasks
The communication layer controls the data transfer by managing the interface USB
(Universal Serial Bus 2.0) and the industrial protocol CAN (Campus Area Network), both
high performance communication devices. The USB makes a system interconnection
through a star form topology, which has the computer as a central knot. Each USB door
supports up to 127 devices and, in this manner, it is possible to connect a great quantity of
joints to the controller. The protocol CAN form the bus between the secondary knots
(motion controllers) and the result structure is a redundant net architecture. The
implementation of this bus is still being explored and intends to introduce the possibility of
a joint to access information of another joint without passing through the central knot. This
will increase the performance of the net and it gives the opportunity to an implementation
of the system of control without the central knot: a totally embedded control. The resultant
architecture communication is presented in Fig. 3.

www.intechopen.com

An Open-architecture Robot Controller applied to Interaction Tasks 105

proportional at the utilization level of dedicated processors in system. The system
decomposition in task dedicated processors guarantees a fixed and minimum response time.

3.5 Physical Layer
The industrial manipulator physical access (i.e., actuators and proprioceptive sensors) occur
in physical layer, composed only by the input and output robot data channels. Usually, the
actuator activation is realized indirectly, because, the controller signs only access the unit
power that adapts this signs for the motors.

4. Reference Model applied to Interaction Tasks

Special requirement for robot controllers that includes force control
Generally the robotic controllers are developed for applications that require only position
control, and the robot end effector doesn't contact the workspace during its movement. The
interaction concept is related with the contact between robot and environment, where
generated force and torque profiles need to be controlled. In applications that need force
control, the end effector contacts some surface in its workspace and this interaction
generates contact forces that must be controlled in a way to fulfill the task correctly, without
damaging both, robot tools and the working objects.
The contact force intensities, originated by tool movements commanded by the robot
controller, depend on both, the tool rigidity and the object surface rigidity, and they must be
also controlled. A small tool movement could originate large force intensities in case the tool
and the object surface rigidity are large. It should be noted that by introducing compliance
to the tool we generate a delay in the application of the forces and this could be
unacceptable in some applications. Consequently, the system should have a small time
response to these forces, to prevent tool, robot or object damages. The use of high
performance systems is a requisite of controllers for application of force control.
Therefore, the reference model proposed was applied, considering the interaction tasks
requirements, for retrofit of old industrial manipulator. The resultant functional structure
for controller is presented in Fig. 2 and described as follows.

4.1 Task Layer for interaction tasks
The task layer has a mathematical environment prepared to make operations with matrices
in which the control law is stored. The information proceeding from the n joints are
available in matrices nx1 corresponding to the position vector , and the velocity vector ,
where the lines represent the joints. The force sensor data are stored in a matrix 6 x 1
called , which contains forces and moments data. The information to
be directed to the motors and encoders is stored in an n x 3 control matrix . In this layer the
user develops the control laws of position and/or force of the manipulator and it is possible
to carry through the task simulation.

Fig. 2. Functional architecture of proposed reference model applied to interaction tasks.

4.2 Integration Layer for interaction tasks
In the integration layer the concatenation and the organization of all the information coming
from the sensors and to be sent to the superior layer are done. In case of the inclusion of a
new hardware to the system, it is necessary to add its control structure to this layer. This is
carried through by a high-level application that manages the power unit and control unit.
Preventing any irregular movements and danger situations and controlling the components
of the lower level. In this software the controller's components can be activated or disabled
independently.

4.3 Communication Layer for interaction tasks
The communication layer controls the data transfer by managing the interface USB
(Universal Serial Bus 2.0) and the industrial protocol CAN (Campus Area Network), both
high performance communication devices. The USB makes a system interconnection
through a star form topology, which has the computer as a central knot. Each USB door
supports up to 127 devices and, in this manner, it is possible to connect a great quantity of
joints to the controller. The protocol CAN form the bus between the secondary knots
(motion controllers) and the result structure is a redundant net architecture. The
implementation of this bus is still being explored and intends to introduce the possibility of
a joint to access information of another joint without passing through the central knot. This
will increase the performance of the net and it gives the opportunity to an implementation
of the system of control without the central knot: a totally embedded control. The resultant
architecture communication is presented in Fig. 3.

www.intechopen.com

Advances in Robot Manipulators106

Fig. 3. Communication architecture for interaction tasks.

4.4 Interface Layer for interaction tasks
The interface layer comprises the embedded systems that carry out the control of the robotic
joints, named motion controllers. Each of these motor digital controllers decodes the
corresponding encoder signal and generates the modulation width pulse (PWM) to the
control of the respective motor. Each of these systems has an optical isolated interface to
prevent any inadequate return to the processor. It possesses a great amount of expansion
doors, which allows the connection of other tools.
We developed the controller with a modular architecture to have an independent control for
each joint and so, divide the mathematical complexity among the processors of the system.
This results in a distributed processing organized by the central knot (computer), where the
operations occur in parallel. This methodology facilitates the expansion and maintenance of
the system.
Currently the system operates with a medium tax of update of the signals of 1 ms, only for a
convention of literature. In case of necessity this largeness can be diminished.

4.5 Physical Layer for interaction tasks
The most inferior layer, here denominated physical layer, is the power unit of the motors
and the angular position sensors.

5. Experimental Environment

The retrofitting methodology was validated with the adaptation of an old anthropomorphic
manipulator, model Rv15, produced by the REIS Robotics, for interaction tasks. Where was
substituted the proprietary controller by the new open-architecture controller and coupled a
force sensor in system.

The REIS Rv15 robot has six rotating joints acted by electric motors and the angular
positions measurement are done using incremental optical encoders. It is a manipulator
with a topology that is very common in industry applications, which constitutes an
anthropomorphous arm (joints 1, 2 and 3) with a spherical wrist (joints 4, 5 and 6).
The Fig. 4 presents a complete diagram of the embedded five-layer open-architecture robotic
controller for an industrial manipulator, containing it data flow and the systems
interconnections

Fig. 4. Experimental environment for interaction tasks.

5.1 Hardware architecture description
The system's hardware was developed and built using high performance and reliability, low
cost and easiness to be found in the market components. The Fig. 5 shows the diagram of
internal blocks used in the motion controllers.
The main component is a digital signal controller (DSC) produced by the Microchip
Technology Inc. named dsPIC30F6010A. It operates with 16-bits, in a 120 MHz frequency
with a package TQFP of 80 pins, and is one integrant of the family of the motors control. It
possesses a great amount of well differentiated modules including an ample program
memory with a 144K and a non-volatile memory with 4096 bytes for information storage. It
has 16 ways for A/D conversions and the necessary modules of communication. For the
communication through USB we used a component which carries through the conversion of
module UART for the bus. This component supports transference taxes up to 3 Megabaud
and is manufactured by the FTDI (Future Technology Devices International Ltd).

www.intechopen.com

An Open-architecture Robot Controller applied to Interaction Tasks 107

Fig. 3. Communication architecture for interaction tasks.

4.4 Interface Layer for interaction tasks
The interface layer comprises the embedded systems that carry out the control of the robotic
joints, named motion controllers. Each of these motor digital controllers decodes the
corresponding encoder signal and generates the modulation width pulse (PWM) to the
control of the respective motor. Each of these systems has an optical isolated interface to
prevent any inadequate return to the processor. It possesses a great amount of expansion
doors, which allows the connection of other tools.
We developed the controller with a modular architecture to have an independent control for
each joint and so, divide the mathematical complexity among the processors of the system.
This results in a distributed processing organized by the central knot (computer), where the
operations occur in parallel. This methodology facilitates the expansion and maintenance of
the system.
Currently the system operates with a medium tax of update of the signals of 1 ms, only for a
convention of literature. In case of necessity this largeness can be diminished.

4.5 Physical Layer for interaction tasks
The most inferior layer, here denominated physical layer, is the power unit of the motors
and the angular position sensors.

5. Experimental Environment

The retrofitting methodology was validated with the adaptation of an old anthropomorphic
manipulator, model Rv15, produced by the REIS Robotics, for interaction tasks. Where was
substituted the proprietary controller by the new open-architecture controller and coupled a
force sensor in system.

The REIS Rv15 robot has six rotating joints acted by electric motors and the angular
positions measurement are done using incremental optical encoders. It is a manipulator
with a topology that is very common in industry applications, which constitutes an
anthropomorphous arm (joints 1, 2 and 3) with a spherical wrist (joints 4, 5 and 6).
The Fig. 4 presents a complete diagram of the embedded five-layer open-architecture robotic
controller for an industrial manipulator, containing it data flow and the systems
interconnections

Fig. 4. Experimental environment for interaction tasks.

5.1 Hardware architecture description
The system's hardware was developed and built using high performance and reliability, low
cost and easiness to be found in the market components. The Fig. 5 shows the diagram of
internal blocks used in the motion controllers.
The main component is a digital signal controller (DSC) produced by the Microchip
Technology Inc. named dsPIC30F6010A. It operates with 16-bits, in a 120 MHz frequency
with a package TQFP of 80 pins, and is one integrant of the family of the motors control. It
possesses a great amount of well differentiated modules including an ample program
memory with a 144K and a non-volatile memory with 4096 bytes for information storage. It
has 16 ways for A/D conversions and the necessary modules of communication. For the
communication through USB we used a component which carries through the conversion of
module UART for the bus. This component supports transference taxes up to 3 Megabaud
and is manufactured by the FTDI (Future Technology Devices International Ltd).

www.intechopen.com

Advances in Robot Manipulators108

Fig. 5. Interface architecture for interaction tasks.

Moreover, it possesses other functionalities, including the generation of a digital external
signal oscillator with changeable frequencies. Besides this, the same manufacturer produces
available Royalty-Free drivers for many operational systems, for this form of
implementation. To implement the requirements for the physical layer defined by the ISO-
11898, we connect the CAN industrial protocol to a transceiver of high speed, which
supports until 1Mb/s.
The system firmware implementation uses the high level language C. This is completely
modulated and organized in units, to facilitate modifications. All the modules operate with
interruptions of the processor with distinct priorities, such that an operation of less priority
doesn't delay a higher importance process.
The module of motion controller is also composed by a 16 bits PWM generator and by a
module to read the quadrature encoder (named QEI), which we extend for 32 bits.
Connected to it there is an optical decoupling barrier and an H-bridge for the control of the
power unit that supports 100V and 8A. There are also amplified auxiliary output channels,
which operate until 100V and 6A. To protect the system, the encoder entrances and the
auxiliary inputs also have been connected to optical decoupling barrier. Internally there is
still a great amount of resources that had not been used and that can be useful in future
upgrades of the system.
The experimental validation of the proposal was accomplished with implementation of a
indirect force control strategy, the impedance control that will be presented to follow.

5.2 Firmware architecture description
The real time processing is obtained with the modularity of the embedded controller. These
modules communicate only through hardware interrupts with eight priority levels. The
software architecture and realistic physical modelling of the sensors and actuators provided
to system a high response time.

The servo motors are controlled through a embedded self-tuning PID controller that uses
the linear actuator dynamic model. The Fig. 6 presents the validation of dynamic model.

Fig. 6. Validation of the dynamic model behaviour.

5.3 Software architecture description
The software was developed using a high level object-oriented language (C++), for the
Linux operating system recompiled for real-time application interface (RTAI). The control
system monitors the processor activity, because most processes works through threads.
Like this, when the processor activity reaches a critical level, the threads priorities are
altered favouring controller essential tasks.

5.4 Impedance control
The manipulator control strategies for interaction tasks are grouped usually in two
categories: indirect force control and direct force control. The first approaches the movement
with an implicit force feedback only based in movement control, the other supplies the
possibility of force control for a wanted value, through an explicit force feedback (Sciavicco
& Siciliano, 2000).
The classic impedance control approaches contact force indirectly modeling the interaction
as a mass-spring-damper system. The indirect relationship is a consequence of force sign
influence on control law, the objective is to adapt the manipulator dynamic behavior in
contact with the environment and not to fulfill a position and/or force trajectory. This way,
an explicit force feedback doesn't exist in system, because, this signal just supplies the
system impedance in contact with a surface.
Therefore, the fundamental philosophy of impedance control, in agreement with (Hogan,
1985), is that the control system regulates the manipulator impedance, that is defined by
relationship between the speed and applied force, Fig. 7 (Zeng & Hemami, 1997). The
formulation of this control strategy is presented to follow, in the equation 1.

www.intechopen.com

An Open-architecture Robot Controller applied to Interaction Tasks 109

Fig. 5. Interface architecture for interaction tasks.

Moreover, it possesses other functionalities, including the generation of a digital external
signal oscillator with changeable frequencies. Besides this, the same manufacturer produces
available Royalty-Free drivers for many operational systems, for this form of
implementation. To implement the requirements for the physical layer defined by the ISO-
11898, we connect the CAN industrial protocol to a transceiver of high speed, which
supports until 1Mb/s.
The system firmware implementation uses the high level language C. This is completely
modulated and organized in units, to facilitate modifications. All the modules operate with
interruptions of the processor with distinct priorities, such that an operation of less priority
doesn't delay a higher importance process.
The module of motion controller is also composed by a 16 bits PWM generator and by a
module to read the quadrature encoder (named QEI), which we extend for 32 bits.
Connected to it there is an optical decoupling barrier and an H-bridge for the control of the
power unit that supports 100V and 8A. There are also amplified auxiliary output channels,
which operate until 100V and 6A. To protect the system, the encoder entrances and the
auxiliary inputs also have been connected to optical decoupling barrier. Internally there is
still a great amount of resources that had not been used and that can be useful in future
upgrades of the system.
The experimental validation of the proposal was accomplished with implementation of a
indirect force control strategy, the impedance control that will be presented to follow.

5.2 Firmware architecture description
The real time processing is obtained with the modularity of the embedded controller. These
modules communicate only through hardware interrupts with eight priority levels. The
software architecture and realistic physical modelling of the sensors and actuators provided
to system a high response time.

The servo motors are controlled through a embedded self-tuning PID controller that uses
the linear actuator dynamic model. The Fig. 6 presents the validation of dynamic model.

Fig. 6. Validation of the dynamic model behaviour.

5.3 Software architecture description
The software was developed using a high level object-oriented language (C++), for the
Linux operating system recompiled for real-time application interface (RTAI). The control
system monitors the processor activity, because most processes works through threads.
Like this, when the processor activity reaches a critical level, the threads priorities are
altered favouring controller essential tasks.

5.4 Impedance control
The manipulator control strategies for interaction tasks are grouped usually in two
categories: indirect force control and direct force control. The first approaches the movement
with an implicit force feedback only based in movement control, the other supplies the
possibility of force control for a wanted value, through an explicit force feedback (Sciavicco
& Siciliano, 2000).
The classic impedance control approaches contact force indirectly modeling the interaction
as a mass-spring-damper system. The indirect relationship is a consequence of force sign
influence on control law, the objective is to adapt the manipulator dynamic behavior in
contact with the environment and not to fulfill a position and/or force trajectory. This way,
an explicit force feedback doesn't exist in system, because, this signal just supplies the
system impedance in contact with a surface.
Therefore, the fundamental philosophy of impedance control, in agreement with (Hogan,
1985), is that the control system regulates the manipulator impedance, that is defined by
relationship between the speed and applied force, Fig. 7 (Zeng & Hemami, 1997). The
formulation of this control strategy is presented to follow, in the equation 1.

www.intechopen.com

Advances in Robot Manipulators110

Fig. 7. Impedance force control.

(1)

Where, is the mass matrix, is the damping matrix, is the stiffness matrix and

is the interaction force matrix.
Equally to position control for inverse dynamics, where the impedance control is based, the
integral knowledge of manipulator dynamics is admitted. In this way, the accurate
knowledge of object elasticity characteristics or contact environment is not necessary in this
control strategy (Yoshikawa, 2000).

5.5 Results
The implemented control strategy uses force feedback only to regulate the manipulator
impedance, assuming that the manipulator is in contact with operation surface. In this way,
when some force be detected the control law only will regulate the impedance to establish
the system.
The application used to validate the developed controller for interaction tasks is based in
this characteristic of the impedance control, however, in this case, the end-effector isn't in
contact with the surface. Therefore, the manipulator is immobile, admitting to be in wanted
impedance profile, and when detects external force controls the system impedance (Fig. 8).
The joint speed profiles generated in experiments are present in Fig. 9.

Fig. 8. Interface architecture for interaction tasks.

Fig. 9. Force and joint velocities profile of the impedance control.

The system validation experiment accomplished consists in a parallel manipulation on robot
workspace limits. The force profiles, detected by JR3 force and moments sensor, only adapt
manipulator dynamic behaviour with environment dynamic characteristics. In this way, a
profile of force control is used to drive the joints velocity behaviour to a desired impedance
profile.

6. Conclusion

In this work was considered a new reference model for a control system functional
architecture applied to open-architecture robot controllers. The proposed approach was
applied for integrally developing of a five-layer based open-architecture robotic controller
considering interaction tasks. The architecture uses parallel and distributed processing
techniques and circumvents the necessity of compliance in system, allowing a real-time
processing of the application and the total information control.
Old manipulator retrofitting considers the problem of including controllers with new
functionalities as force control. The main characteristics of these systems are high-stiffness
and position control. These characteristics restrict response time of the system. Therefore, an
open-architecture system can be projected to operate in real-time.
The proposed reference model for open-architecture robot controllers was experimentally
validated including the implementation of an indirect force control strategy in the robot
controller. Practical tests have shown the interest of the proposed architecture in terms of
controller flexibility, costs and maintenance and high capacity of processing.
This reference model clarifies the concept of robot controller and explains the internal
modules that compose robot control unit. The system decomposition makes possible the
optimization of internal modules for a specific task, e.g., interaction tasks. In this way, it is

www.intechopen.com

An Open-architecture Robot Controller applied to Interaction Tasks 111

Fig. 7. Impedance force control.

(1)

Where, is the mass matrix, is the damping matrix, is the stiffness matrix and

is the interaction force matrix.
Equally to position control for inverse dynamics, where the impedance control is based, the
integral knowledge of manipulator dynamics is admitted. In this way, the accurate
knowledge of object elasticity characteristics or contact environment is not necessary in this
control strategy (Yoshikawa, 2000).

5.5 Results
The implemented control strategy uses force feedback only to regulate the manipulator
impedance, assuming that the manipulator is in contact with operation surface. In this way,
when some force be detected the control law only will regulate the impedance to establish
the system.
The application used to validate the developed controller for interaction tasks is based in
this characteristic of the impedance control, however, in this case, the end-effector isn't in
contact with the surface. Therefore, the manipulator is immobile, admitting to be in wanted
impedance profile, and when detects external force controls the system impedance (Fig. 8).
The joint speed profiles generated in experiments are present in Fig. 9.

Fig. 8. Interface architecture for interaction tasks.

Fig. 9. Force and joint velocities profile of the impedance control.

The system validation experiment accomplished consists in a parallel manipulation on robot
workspace limits. The force profiles, detected by JR3 force and moments sensor, only adapt
manipulator dynamic behaviour with environment dynamic characteristics. In this way, a
profile of force control is used to drive the joints velocity behaviour to a desired impedance
profile.

6. Conclusion

In this work was considered a new reference model for a control system functional
architecture applied to open-architecture robot controllers. The proposed approach was
applied for integrally developing of a five-layer based open-architecture robotic controller
considering interaction tasks. The architecture uses parallel and distributed processing
techniques and circumvents the necessity of compliance in system, allowing a real-time
processing of the application and the total information control.
Old manipulator retrofitting considers the problem of including controllers with new
functionalities as force control. The main characteristics of these systems are high-stiffness
and position control. These characteristics restrict response time of the system. Therefore, an
open-architecture system can be projected to operate in real-time.
The proposed reference model for open-architecture robot controllers was experimentally
validated including the implementation of an indirect force control strategy in the robot
controller. Practical tests have shown the interest of the proposed architecture in terms of
controller flexibility, costs and maintenance and high capacity of processing.
This reference model clarifies the concept of robot controller and explains the internal
modules that compose robot control unit. The system decomposition makes possible the
optimization of internal modules for a specific task, e.g., interaction tasks. In this way, it is

www.intechopen.com

Advances in Robot Manipulators112

possible to include new functionalities to the system, e.g., other feedback signals, new
actuators or dedicated processors for a specific problem, e.g., resolution of redundancy or
inverse kinematics.
In the actual stage, the researchers have been focused on the theoretical aspects of the
problem. Further works will consider the model validation and experimental applications.

7. References

Abele, E.; Weigold, M. & Rothenbücher, S. (2007). Modeling and identification of an
industrial robot for machining applications, CIRP Annals- Manufacturing Technology,
Vol. 56, No. 1, page numbers 387–390.

Bona, B.; Indri, M. & Smaldone, N. (2001). Open system real time architecture and software
design for robotcontrol, Proceedings 2001 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics, Vol. 1.

Donald, S. & Dunlop, G. (2001) Retrofitting path control to a unimate 2000b robot,
Proccedings 2001 Australian Conference on Robotics and Automation, Vol. 14, page
number. 15.

Ford, W. (1994). What is an open architecture robot controller?, Proceedings of the 1994 IEEE
International Symposium on Intelligent Control, page numbers 27–32.

Hong, K.; Choi, K.; Kim, J. & Lee, S. (2001). A pc-based open robot control system: PC-ORC,
Robotics and Computer Integrated Manufacturing, Vol. 17, No. 4, page numbers 355–
365.

Hogan, N. (1985). Impedance Control: An Approach to Manipulation, Parts I-Ill, ASME
Journal of Dynamic Systems, Measurement, and Control, Vol. 107, No. 1, page numbers
1–24.

Lages, W.; Henriques, R. & Bracarense, A. (2003). Arquitetura aberta para retrofitting de
robôs, Manet Notes Workshop, Bragança Paulista, SP, Brazil.

Lippiello, V.; Villani, L. & Siciliano, B. (2007). An open architecture for sensory feedback
control of a dual-arm industrial robotic cell, Industrial Robot: An International
Journal, Vol. 34, No. 1, page numbers 46–53.

Lutz, P. & Sperling, W. (1997). Osaca the vendor neutral control architecture, Proceedings
European Conference Integration in Manufacturing, page numbers 247–256.

Macchelli, A. & Melchiorri, C. (2002). Real time control system for industrial robots and
control applications based on real time Linux, 15th IFAC World Congress, page
numbers 21-26, Barcelona, Spain.

Nacsa, J. (2001). Comparison of three different open architecture controllers, Proceedings of
IFAC MIM, page numbers 2–4, Prague.

Pritschow, G. ; Altintas, Y.; et al. (2001). Open controller architecture–past, present and
future, CIRP Annals-Manufacturing Technology, Vol. 50, No. 2, page numbers 463–
470.

 Sciavicco, L. & Siciliano, B. (2000). Modelling and Control of Robot Manipulators. Springer.
Yoshikawa, T. (2000). Force control of robot manipulators, Proceedings. ICRA ’00 IEEE

International Conference on Robotics and Automation, Vol. 1, page numbers 220–226.
Zeng, G. & Hemami, A. (1997). An overview of robot force control, Robotica, Vol. 15, No. 05,

page numbers 473–482.

www.intechopen.com

Advances in Robot Manipulators

Edited by Ernest Hall

ISBN 978-953-307-070-4

Hard cover, 678 pages

Publisher InTech

Published online 01, April, 2010

Published in print edition April, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The purpose of this volume is to encourage and inspire the continual invention of robot manipulators for

science and the good of humanity. The concepts of artificial intelligence combined with the engineering and

technology of feedback control, have great potential for new, useful and exciting machines. The concept of

eclecticism for the design, development, simulation and implementation of a real time controller for an

intelligent, vision guided robots is now being explored. The dream of an eclectic perceptual, creative controller

that can select its own tasks and perform autonomous operations with reliability and dependability is starting to

evolve. We have not yet reached this stage but a careful study of the contents will start one on the exciting

journey that could lead to many inventions and successful solutions.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

A. Oliveira, E. De Pieri and U. Moreno (2010). An Open-architecture Robot Controller applied to Interaction

Tasks, Advances in Robot Manipulators, Ernest Hall (Ed.), ISBN: 978-953-307-070-4, InTech, Available from:

http://www.intechopen.com/books/advances-in-robot-manipulators/an-open-architecture-robot-controller-

applied-to-interaction-tasks

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

