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1. Introduction   
 

Many current robotic applications are limited by the industry state of art of the 
manipulators control algorithms. The inclusion of force and vision feedbacks, the possibility 
of cooperation between two or more manipulators, the control of robots with irregular 
topology will certainly enlarge the industrial robotics applications. The development of 
control algorithms to this end brings the necessity of using open-architecture controllers. 
Generally the robotic controllers are developed for position control, without accomplishing 
integrally the requirements of tasks in which interactions with the environment occur. 
Therefore, this is currently one of the main research areas in robotics, e.g., in (Abele et al., 
2007) is presented the identification of characteristics to an industrial robot to execute 
machining applications. To consider this interaction the robot controller has to give priority 
to the force control time response, because in the instant of end-effectors contact with the 
surface, several forces act on the system. Depending on the speeds and the accelerations 
involved in the process, damages or errors can occur. To avoid these effects, compliances are 
inserted in tool or in surface of operation. 
A new reference model for a control system functional architecture applied to open-
architecture robot controllers is presented.  Where, this model is applied for integrally 
development of a five-layer based open-architecture robotic controller for interaction tasks, 
which uses parallel and distributed processing techniques, avoiding the necessity of 
compliance in system, allowing a real-time processing of the application and the total 
control of information.  This architecture provides flexibility, the knowledge of all the 
control structures and allows the user to modify all controller layers. The used controller 
conception aims to fulfill with the following requirements: high capacity of processing, low 
cost, connectivity with other systems, availability for the remote access, easiness of 
maintenance, flexibility in the implementation, integration with a personal computer and 
programming in high level. 
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This chapter is organized as follows. Section 2 overviews the most relevant categories, 
definitions and requirements of robot controllers. Section 3 details the reference model for 
open-architecture controller development. Section 4 describes the robot retrofitting for 
interactions tasks. Section 5 presents and discusses the experimental setup. Finally, Section 6 
concludes the chapter and outlines future research and development directions.  

 
2. Open-architecture Robot Controllers 
 

Various open control architectures for industrial robots have already been developed by 
robot and control manufacturers as well as in research labs. In (Lippiello et al., 2007) is 
presented an open architecture for sensory feedback control of a dual-arm industrial robotic 
cell for cooperation tasks. In (Macchelli & Melchiorri, 2007) is presented a real-time control 
system based on RTAI-Linux operating system and developed for coupling of an advanced 
end-effector. (Hong et al., 2001) develop a system of robot open control based on a reference 
model OSACA. (Bona et al., 2001) propose a real-time architecture for robot control system 
development based in real-time operating system for embedded systems, RTOS.  In (Donald 
& Dunlop, 2001) present a retrofitting of a path control system for a hydraulic robot based 
on a FPGA executing the embedded operating system RTSS. The inexistence of a standard 
methodology for architecture controller project difficult the development of high-openness 
degree control system. 
Most of the existing robot control open architectures are based on a standard PC hardware 
and a standard operating system, because I/O boards and communication boards for robots 
have a higher cost in relation to the similar boards for PCs. Another reason is the lack of 
standardization of robot peripherals, with each manufacturer developing its own protocols 
and interfaces, forcing the users to buy all the components of a single manufacturer (Lages 
et al., 2003). Additionally, a PC based controller can be integrated more easily with many 
commercially available add-on peripherals such as mass storage devices, Ethernet card and 
other I/O devices. So, the facility to integrate other functionalities is a strong reason to use a 
standard PC hardware in robot control open architectures. 
Another reason is that the robot programming languages are, at low level, more similar to 
the Assembly languages than to the modern high level languages and this may difficult 
implementations (Lages et al., 2003). In a PC based controller standard software 
development tools (e.g., Visual C++, Visual Basic or Delphi) can be used. 

 
2.1 Definitions 
The definition of open system, according to Technical Committee of Open Systems of IEEE 
is “An open system provides capabilities that enable properly implemented applications to 
run on a variety of platforms from multiple vendors, interoperate with other system 
applications and present a consistent styler of interaction with the user”. A open-
architecture control system has the capacity to operate with the best components of different 
manufacturers. What makes possible the easy integration of new system functionalities. 
From user point of view, the “openness” of the systems consists in capabilities to integrate, 
extend and reuse software modules in control systems (Lutz & Sperling, 1997). In (Pritschow 
& Altintas, 2001) and (Nacsa, 2001) the “degree of openness” of a system is defined by some 
criteria, as: 

 Extendibility: A variable number of modules can be executed simultaneously in a same 
platform, without causing conflicts, i.e., this characteristic depends mainly on the 
operating system, that should accomplish a multi-task processing, and also of modules 
coupling level, that should allow those operations. 

 Interoperability:  The modules work together efficiently and they can interchange data 
in a defined way through logical and physical communication buses. 

 Portability:  The modules can be executed in different platforms without modifications, 
maintaining their functionalities, i.e., they should conform software and hardware 
standards to maintain the system compatibility with other platforms. 

 Scalability: Depending on the user requirements, the module functionalities and 
performance and size of the hardware, software and firmware can adapt for the system 
optimization. 

Those characteristics define the "degree of openness" of a system,  how more extended and 
refined, major will be the level of openness. For open-architecture controllers, one more 
characteristic should be considered, the modularity. 
 Modularity: The system is divided in specialized subsystems, called modules, that can 

be substituted without significant modifications in system. This characteristic consists 
of logical and physical system decomposition in small functional units. 

 
2.2 Categories 
The controllers are characterized by the freedom of access information or simply for “degree 
of openness”. Usually, the control of several system modules (e.g., unit power and low level 
control) is proprietary and cannot be modified by user, other levels are considered open 
(e.g., communication interface and high-level control), i.e., they are based on hardware and 
software standards with specifications of open interface. 
In (Pritschow & Altintas, 2001), (Lutz & Sperling, 1997) and (Ford, 1994), the "degree of 
openness" of a system is defined in agreement with access concept to controller layers, like 
this, they can be classified in three categories: 
 Proprietary: That system modality allows the access just to application layer, being 

therefore, a closed system. In those systems is extremely difficult or impossible the 
integration of external modules. 

 Hybrid or Restricted: That category makes available the access to application layer and 
a controlled access to operating system module. The operating system has a fixed 
topology, however, allows small changes in control system modules (e.g., gains and 
parameters). 

 Open: Open-architecture systems allow integral access of application layers and 
operating system modules, supplying a homogeneous vision of the system, allowing 
the manipulation and modification of all modules that compose the system. Its offers 
interchangeability, scalability, portability and interoperability. 

 
2.3 Requirements 
One of main requirements for a system to be characterized with open-architecture is the 
necessity of the control functionalities be subdivided in small functional units with a solid 
relationship among the subsystems. Consequently, the modularity becomes fundamental for 
a control system to have an open-architecture (Pritschow & Altintas, 2001). 
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This chapter is organized as follows. Section 2 overviews the most relevant categories, 
definitions and requirements of robot controllers. Section 3 details the reference model for 
open-architecture controller development. Section 4 describes the robot retrofitting for 
interactions tasks. Section 5 presents and discusses the experimental setup. Finally, Section 6 
concludes the chapter and outlines future research and development directions.  

 
2. Open-architecture Robot Controllers 
 

Various open control architectures for industrial robots have already been developed by 
robot and control manufacturers as well as in research labs. In (Lippiello et al., 2007) is 
presented an open architecture for sensory feedback control of a dual-arm industrial robotic 
cell for cooperation tasks. In (Macchelli & Melchiorri, 2007) is presented a real-time control 
system based on RTAI-Linux operating system and developed for coupling of an advanced 
end-effector. (Hong et al., 2001) develop a system of robot open control based on a reference 
model OSACA. (Bona et al., 2001) propose a real-time architecture for robot control system 
development based in real-time operating system for embedded systems, RTOS.  In (Donald 
& Dunlop, 2001) present a retrofitting of a path control system for a hydraulic robot based 
on a FPGA executing the embedded operating system RTSS. The inexistence of a standard 
methodology for architecture controller project difficult the development of high-openness 
degree control system. 
Most of the existing robot control open architectures are based on a standard PC hardware 
and a standard operating system, because I/O boards and communication boards for robots 
have a higher cost in relation to the similar boards for PCs. Another reason is the lack of 
standardization of robot peripherals, with each manufacturer developing its own protocols 
and interfaces, forcing the users to buy all the components of a single manufacturer (Lages 
et al., 2003). Additionally, a PC based controller can be integrated more easily with many 
commercially available add-on peripherals such as mass storage devices, Ethernet card and 
other I/O devices. So, the facility to integrate other functionalities is a strong reason to use a 
standard PC hardware in robot control open architectures. 
Another reason is that the robot programming languages are, at low level, more similar to 
the Assembly languages than to the modern high level languages and this may difficult 
implementations (Lages et al., 2003). In a PC based controller standard software 
development tools (e.g., Visual C++, Visual Basic or Delphi) can be used. 

 
2.1 Definitions 
The definition of open system, according to Technical Committee of Open Systems of IEEE 
is “An open system provides capabilities that enable properly implemented applications to 
run on a variety of platforms from multiple vendors, interoperate with other system 
applications and present a consistent styler of interaction with the user”. A open-
architecture control system has the capacity to operate with the best components of different 
manufacturers. What makes possible the easy integration of new system functionalities. 
From user point of view, the “openness” of the systems consists in capabilities to integrate, 
extend and reuse software modules in control systems (Lutz & Sperling, 1997). In (Pritschow 
& Altintas, 2001) and (Nacsa, 2001) the “degree of openness” of a system is defined by some 
criteria, as: 

 Extendibility: A variable number of modules can be executed simultaneously in a same 
platform, without causing conflicts, i.e., this characteristic depends mainly on the 
operating system, that should accomplish a multi-task processing, and also of modules 
coupling level, that should allow those operations. 

 Interoperability:  The modules work together efficiently and they can interchange data 
in a defined way through logical and physical communication buses. 

 Portability:  The modules can be executed in different platforms without modifications, 
maintaining their functionalities, i.e., they should conform software and hardware 
standards to maintain the system compatibility with other platforms. 

 Scalability: Depending on the user requirements, the module functionalities and 
performance and size of the hardware, software and firmware can adapt for the system 
optimization. 

Those characteristics define the "degree of openness" of a system,  how more extended and 
refined, major will be the level of openness. For open-architecture controllers, one more 
characteristic should be considered, the modularity. 
 Modularity: The system is divided in specialized subsystems, called modules, that can 

be substituted without significant modifications in system. This characteristic consists 
of logical and physical system decomposition in small functional units. 

 
2.2 Categories 
The controllers are characterized by the freedom of access information or simply for “degree 
of openness”. Usually, the control of several system modules (e.g., unit power and low level 
control) is proprietary and cannot be modified by user, other levels are considered open 
(e.g., communication interface and high-level control), i.e., they are based on hardware and 
software standards with specifications of open interface. 
In (Pritschow & Altintas, 2001), (Lutz & Sperling, 1997) and (Ford, 1994), the "degree of 
openness" of a system is defined in agreement with access concept to controller layers, like 
this, they can be classified in three categories: 
 Proprietary: That system modality allows the access just to application layer, being 

therefore, a closed system. In those systems is extremely difficult or impossible the 
integration of external modules. 

 Hybrid or Restricted: That category makes available the access to application layer and 
a controlled access to operating system module. The operating system has a fixed 
topology, however, allows small changes in control system modules (e.g., gains and 
parameters). 

 Open: Open-architecture systems allow integral access of application layers and 
operating system modules, supplying a homogeneous vision of the system, allowing 
the manipulation and modification of all modules that compose the system. Its offers 
interchangeability, scalability, portability and interoperability. 

 
2.3 Requirements 
One of main requirements for a system to be characterized with open-architecture is the 
necessity of the control functionalities be subdivided in small functional units with a solid 
relationship among the subsystems. Consequently, the modularity becomes fundamental for 
a control system to have an open-architecture (Pritschow & Altintas, 2001). 
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The determination of module complexity should consider factors as the “degree of 
openness” wanted and integration cost. Small modules supply a high-level openness, but 
they increase the complexity and integration costs. A low modularity can drive for a high 
demand of resources and to deteriorate the system performance, not allowing real-time data 
articulation (Nacsa, 2001). 
The system structuring through a modular interaction requests a detailed group of 
relationship methods, composed by Application Programming Interfaces (i.e., these are a 
group of routines and software standards for extern access of their functionalities). In open 
control systems these interfaces need to be standardized (Pritschow & Altintas, 2001). 
 The modular platforms encapsulate the operation system specific methods absorbing the 
hardware, operating system and communication characteristics. What promotes a high level 
data exchange, this abstraction requests a data mediation module, called middleware. These 
data concatenation and adaptation points increase the portability and interoperability of 
distributed applications in heterogeneous environments. 

 
3. The Reference Model for Open-Architecture Robot Controllers 
 

The reference model for a control system functional architecture presented in (Sciavicco & 
Siciliano, 2000) has a priority focus in the control structure, little exploring the other levels of 
robot controllers. 
This work proposes a new reference model for a control system functional architecture 
applied to open-architecture robot controller. The model is based on model of (Sciavicco & 
Siciliano, 2000), however, it expands the approach for all controller levels, adapts their 
layers in agreement with the standard ISO 7498-1 and considers the definition, categories, 
requirements and tendencies for open-architecture controllers. The structure of the 
proposed reference model is represented in Fig. 1, where the five hierarchical levels are 
illustrated. To proceed, those layers will be described individually. 

 
3.1 Task Layer 
The task layer is responsible for industrial robot control tasks grouped in three categories: 
trajectory planning, supervisory system and control law. Those operations are processed in 
the central equipment of the system, usually a personal computer (PC). In remote control 
operations, the operations can be divided in two software modules with relationship client-
server. The trajectory planning and supervisory system will be processed with smaller time 
requirements in client, while the control structure will be processed in real time of 
application in server. 

 
3.2 Integration Layer 
The adopted functional architecture hierarchical structure, together with its articulation into 
different modules, suggests a hardware implementation that exploits distributed 
computational resources interconnected by means of suitable communication channels. At 
the integration layer, the information adaptation is accomplished (i.e., concatenation and 
organization) incoming from several processors that compose the distributed system. 

These operations supply to superior layer a heterogeneity vision of the system to sharing 
resources. In this level, peripherals with high-level of abstraction (e.g., exteroceptive 
sensors) are also appropriate in this level. 

 
3.3 Communication Layer 
At the communication layer, the interconnection of information among the system 
processors is accomplished, usually using high-speed data transmission buses. The network 
topology is indifferent, however, it is important the use of redundant ways for connection 
among all intermediate points and the net central knot through the main bus and the 
embedded systems interconnection by an alternative communication bus. Every system 
interconnection accomplished in this layer is based in International Standard ISO/IEC 7498-1. 
 

 
Fig. 1. Functional architecture of proposed reference model. 

 
3.4 Interface Layer 
The interface layer is composed by the embedded systems, i.e., dedicated hardware’s to 
process specific task software (called firmware) encapsulated in internal storage memories. 
This organizational structure divides the system in small hardware modules and 
consequently, distributes the system processing. The processing distribution degree is 
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The determination of module complexity should consider factors as the “degree of 
openness” wanted and integration cost. Small modules supply a high-level openness, but 
they increase the complexity and integration costs. A low modularity can drive for a high 
demand of resources and to deteriorate the system performance, not allowing real-time data 
articulation (Nacsa, 2001). 
The system structuring through a modular interaction requests a detailed group of 
relationship methods, composed by Application Programming Interfaces (i.e., these are a 
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control systems these interfaces need to be standardized (Pritschow & Altintas, 2001). 
 The modular platforms encapsulate the operation system specific methods absorbing the 
hardware, operating system and communication characteristics. What promotes a high level 
data exchange, this abstraction requests a data mediation module, called middleware. These 
data concatenation and adaptation points increase the portability and interoperability of 
distributed applications in heterogeneous environments. 
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Siciliano, 2000) has a priority focus in the control structure, little exploring the other levels of 
robot controllers. 
This work proposes a new reference model for a control system functional architecture 
applied to open-architecture robot controller. The model is based on model of (Sciavicco & 
Siciliano, 2000), however, it expands the approach for all controller levels, adapts their 
layers in agreement with the standard ISO 7498-1 and considers the definition, categories, 
requirements and tendencies for open-architecture controllers. The structure of the 
proposed reference model is represented in Fig. 1, where the five hierarchical levels are 
illustrated. To proceed, those layers will be described individually. 

 
3.1 Task Layer 
The task layer is responsible for industrial robot control tasks grouped in three categories: 
trajectory planning, supervisory system and control law. Those operations are processed in 
the central equipment of the system, usually a personal computer (PC). In remote control 
operations, the operations can be divided in two software modules with relationship client-
server. The trajectory planning and supervisory system will be processed with smaller time 
requirements in client, while the control structure will be processed in real time of 
application in server. 

 
3.2 Integration Layer 
The adopted functional architecture hierarchical structure, together with its articulation into 
different modules, suggests a hardware implementation that exploits distributed 
computational resources interconnected by means of suitable communication channels. At 
the integration layer, the information adaptation is accomplished (i.e., concatenation and 
organization) incoming from several processors that compose the distributed system. 

These operations supply to superior layer a heterogeneity vision of the system to sharing 
resources. In this level, peripherals with high-level of abstraction (e.g., exteroceptive 
sensors) are also appropriate in this level. 

 
3.3 Communication Layer 
At the communication layer, the interconnection of information among the system 
processors is accomplished, usually using high-speed data transmission buses. The network 
topology is indifferent, however, it is important the use of redundant ways for connection 
among all intermediate points and the net central knot through the main bus and the 
embedded systems interconnection by an alternative communication bus. Every system 
interconnection accomplished in this layer is based in International Standard ISO/IEC 7498-1. 
 

 
Fig. 1. Functional architecture of proposed reference model. 

 
3.4 Interface Layer 
The interface layer is composed by the embedded systems, i.e., dedicated hardware’s to 
process specific task software (called firmware) encapsulated in internal storage memories. 
This organizational structure divides the system in small hardware modules and 
consequently, distributes the system processing. The processing distribution degree is 
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proportional at the utilization level of dedicated processors in system. The system 
decomposition in task dedicated processors guarantees a fixed and minimum response time. 

 
3.5 Physical Layer 
The industrial manipulator physical access (i.e., actuators and proprioceptive sensors) occur 
in physical layer, composed only by the input and output robot data channels. Usually, the 
actuator activation is realized indirectly, because, the controller signs only access the unit 
power that adapts this signs for the motors. 

 
4. Reference Model applied to Interaction Tasks 
 
Special requirement for robot controllers that includes force control 
Generally the robotic controllers are developed for applications that require only position 
control, and the robot end effector doesn't contact the workspace during its movement. The 
interaction concept is related with the contact between robot and environment, where 
generated force and torque profiles need to be controlled. In applications that need force 
control, the end effector contacts some surface in its workspace and this interaction 
generates contact forces that must be controlled in a way to fulfill the task correctly, without 
damaging both, robot tools and the working objects. 
The contact force intensities, originated by tool movements commanded by the robot 
controller, depend on both, the tool rigidity and the object surface rigidity, and they must be 
also controlled. A small tool movement could originate large force intensities in case the tool 
and the object surface rigidity are large. It should be noted that by introducing compliance 
to the tool we generate a delay in the application of the forces and this could be 
unacceptable in some applications. Consequently, the system should have a small time 
response to these forces, to prevent tool, robot or object damages. The use of high 
performance systems is a requisite of controllers for application of force control. 
Therefore, the reference model proposed was applied, considering the interaction tasks 
requirements, for retrofit of old industrial manipulator. The resultant functional structure 
for controller is presented in Fig. 2 and described as follows. 

 
4.1 Task Layer for interaction tasks 
The task layer has a mathematical environment prepared to make operations with matrices 
in which the control law is stored. The information proceeding from the n joints are 
available in matrices nx1 corresponding to the position vector , and the velocity vector , 
where the lines represent the joints.  The force sensor data are stored in a matrix 6 x 1 
called , which contains forces and moments data. The information to 
be directed to the motors and encoders is stored in an n x 3 control matrix . In this layer the 
user develops the control laws of position and/or force of the manipulator and it is possible 
to carry through the task simulation. 
 

 
Fig. 2. Functional architecture of proposed reference model applied to interaction tasks. 

 
4.2 Integration Layer for interaction tasks 
In the integration layer the concatenation and the organization of all the information coming 
from the sensors and to be sent to the superior layer are done. In case of the inclusion of a 
new hardware to the system, it is necessary to add its control structure to this layer. This is 
carried through by a high-level application that manages the power unit and control unit. 
Preventing any irregular movements and danger situations and controlling the components 
of the lower level. In this software the controller's components can be activated or disabled 
independently. 

 
4.3 Communication Layer for interaction tasks 
The communication layer controls the data transfer by managing the interface USB 
(Universal Serial Bus 2.0) and the industrial protocol CAN (Campus Area Network), both 
high performance communication devices. The USB makes a system interconnection 
through a star form topology, which has the computer as a central knot. Each USB door 
supports up to 127 devices and, in this manner, it is possible to connect a great quantity of 
joints to the controller. The protocol CAN form the bus between the secondary knots 
(motion controllers) and the result structure is a redundant net architecture. The 
implementation of this bus is still being explored and intends to introduce the possibility of 
a joint to access information of another joint without passing through the central knot. This 
will increase the performance of the net and it gives the opportunity to an implementation 
of the system of control without the central knot: a totally embedded control. The resultant 
architecture communication is presented in Fig. 3. 
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proportional at the utilization level of dedicated processors in system. The system 
decomposition in task dedicated processors guarantees a fixed and minimum response time. 
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The industrial manipulator physical access (i.e., actuators and proprioceptive sensors) occur 
in physical layer, composed only by the input and output robot data channels. Usually, the 
actuator activation is realized indirectly, because, the controller signs only access the unit 
power that adapts this signs for the motors. 
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Special requirement for robot controllers that includes force control 
Generally the robotic controllers are developed for applications that require only position 
control, and the robot end effector doesn't contact the workspace during its movement. The 
interaction concept is related with the contact between robot and environment, where 
generated force and torque profiles need to be controlled. In applications that need force 
control, the end effector contacts some surface in its workspace and this interaction 
generates contact forces that must be controlled in a way to fulfill the task correctly, without 
damaging both, robot tools and the working objects. 
The contact force intensities, originated by tool movements commanded by the robot 
controller, depend on both, the tool rigidity and the object surface rigidity, and they must be 
also controlled. A small tool movement could originate large force intensities in case the tool 
and the object surface rigidity are large. It should be noted that by introducing compliance 
to the tool we generate a delay in the application of the forces and this could be 
unacceptable in some applications. Consequently, the system should have a small time 
response to these forces, to prevent tool, robot or object damages. The use of high 
performance systems is a requisite of controllers for application of force control. 
Therefore, the reference model proposed was applied, considering the interaction tasks 
requirements, for retrofit of old industrial manipulator. The resultant functional structure 
for controller is presented in Fig. 2 and described as follows. 

 
4.1 Task Layer for interaction tasks 
The task layer has a mathematical environment prepared to make operations with matrices 
in which the control law is stored. The information proceeding from the n joints are 
available in matrices nx1 corresponding to the position vector , and the velocity vector , 
where the lines represent the joints.  The force sensor data are stored in a matrix 6 x 1 
called , which contains forces and moments data. The information to 
be directed to the motors and encoders is stored in an n x 3 control matrix . In this layer the 
user develops the control laws of position and/or force of the manipulator and it is possible 
to carry through the task simulation. 
 

 
Fig. 2. Functional architecture of proposed reference model applied to interaction tasks. 

 
4.2 Integration Layer for interaction tasks 
In the integration layer the concatenation and the organization of all the information coming 
from the sensors and to be sent to the superior layer are done. In case of the inclusion of a 
new hardware to the system, it is necessary to add its control structure to this layer. This is 
carried through by a high-level application that manages the power unit and control unit. 
Preventing any irregular movements and danger situations and controlling the components 
of the lower level. In this software the controller's components can be activated or disabled 
independently. 

 
4.3 Communication Layer for interaction tasks 
The communication layer controls the data transfer by managing the interface USB 
(Universal Serial Bus 2.0) and the industrial protocol CAN (Campus Area Network), both 
high performance communication devices. The USB makes a system interconnection 
through a star form topology, which has the computer as a central knot. Each USB door 
supports up to 127 devices and, in this manner, it is possible to connect a great quantity of 
joints to the controller. The protocol CAN form the bus between the secondary knots 
(motion controllers) and the result structure is a redundant net architecture. The 
implementation of this bus is still being explored and intends to introduce the possibility of 
a joint to access information of another joint without passing through the central knot. This 
will increase the performance of the net and it gives the opportunity to an implementation 
of the system of control without the central knot: a totally embedded control. The resultant 
architecture communication is presented in Fig. 3. 
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Fig. 3. Communication architecture for interaction tasks. 

 
4.4 Interface Layer for interaction tasks 
The interface layer comprises the embedded systems that carry out the control of the robotic 
joints, named motion controllers. Each of these motor digital controllers decodes the 
corresponding encoder signal and generates the modulation width pulse (PWM) to the 
control of the respective motor. Each of these systems has an optical isolated interface to 
prevent any inadequate return to the processor. It possesses a great amount of expansion 
doors, which allows the connection of other tools. 
We developed the controller with a modular architecture to have an independent control for 
each joint and so, divide the mathematical complexity among the processors of the system. 
This results in a distributed processing organized by the central knot (computer), where the 
operations occur in parallel.  This methodology facilitates the expansion and maintenance of 
the system.  
Currently the system operates with a medium tax of update of the signals of 1 ms, only for a 
convention of literature. In case of necessity this largeness can be diminished. 

 
4.5 Physical Layer for interaction tasks 
The most inferior layer, here denominated physical layer, is the power unit of the motors 
and the angular position sensors. 

 
5. Experimental Environment 
 

The retrofitting methodology was validated with the adaptation of an old anthropomorphic 
manipulator, model Rv15, produced by the REIS Robotics, for interaction tasks. Where was 
substituted the proprietary controller by the new open-architecture controller and coupled a 
force sensor in system. 

The REIS Rv15 robot has six rotating joints acted by electric motors and the angular 
positions measurement are done using incremental optical encoders. It is a manipulator 
with a topology that is very common in industry applications, which constitutes an 
anthropomorphous arm (joints 1, 2 and 3) with a spherical wrist (joints 4, 5 and 6). 
The Fig. 4 presents a complete diagram of the embedded five-layer open-architecture robotic 
controller for an industrial manipulator, containing it data flow and the systems 
interconnections 
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5.1 Hardware architecture description 
The system's hardware was developed and built using high performance and reliability, low 
cost and easiness to be found in the market components. The Fig. 5 shows the diagram of 
internal blocks used in the motion controllers. 
The main component is a digital signal controller (DSC) produced by the Microchip 
Technology Inc. named dsPIC30F6010A. It operates with 16-bits, in a 120 MHz frequency 
with a package TQFP of 80 pins, and is one integrant of the family of the motors control. It 
possesses a great amount of well differentiated modules including an ample program 
memory with a 144K and a non-volatile memory with 4096 bytes for information storage. It 
has 16 ways for A/D conversions and the necessary modules of communication. For the 
communication through USB we used a component which carries through the conversion of 
module UART for the bus. This component supports transference taxes up to 3 Megabaud 
and is manufactured by the FTDI (Future Technology Devices International Ltd). 
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Moreover, it possesses other functionalities, including the generation of a digital external 
signal oscillator with changeable frequencies. Besides this, the same manufacturer produces 
available Royalty-Free drivers for many operational systems, for this form of 
implementation. To implement the requirements for the physical layer defined by the ISO-
11898, we connect the CAN industrial protocol to a transceiver of high speed, which 
supports until 1Mb/s. 
The system firmware implementation uses the high level language C. This is completely 
modulated and organized in units, to facilitate modifications. All the modules operate with 
interruptions of the processor with distinct priorities, such that an operation of less priority 
doesn't delay a higher importance process. 
The module of motion controller is also composed by a 16 bits PWM generator and by a 
module to read the quadrature encoder (named QEI), which we extend for 32 bits. 
Connected to it there is an optical decoupling barrier and an H-bridge for the control of the 
power unit that supports 100V and 8A. There are also amplified auxiliary output channels, 
which operate until 100V and 6A. To protect the system, the encoder entrances and the 
auxiliary inputs also have been connected to optical decoupling barrier. Internally there is 
still a great amount of resources that had not been used and that can be useful in future 
upgrades of the system. 
The experimental validation of the proposal was accomplished with implementation of a 
indirect force control strategy, the impedance control that will be presented to follow. 

 
5.2 Firmware architecture description 
The real time processing is obtained with the modularity of the embedded controller. These 
modules communicate only through hardware interrupts with eight priority levels. The 
software architecture and realistic physical modelling of the sensors and actuators provided 
to system a high response time. 

The servo motors are controlled through a embedded self-tuning PID controller that uses 
the linear actuator dynamic model. The Fig. 6 presents the validation of dynamic model.  
 

 
Fig. 6. Validation of the dynamic model behaviour. 

 
5.3 Software architecture description 
The software was developed using a high level object-oriented language (C++), for the 
Linux operating system recompiled for real-time application interface (RTAI). The control 
system monitors the processor activity, because most processes works through threads. 
Like this, when the processor activity reaches a critical level, the threads priorities are 
altered favouring controller essential tasks. 

 
5.4 Impedance control 
The manipulator control strategies for interaction tasks are grouped usually in two 
categories: indirect force control and direct force control. The first approaches the movement 
with an implicit force feedback only based in movement control, the other supplies the 
possibility of force control for a wanted value, through an explicit force feedback (Sciavicco 
& Siciliano, 2000). 
The classic impedance control approaches contact force indirectly modeling the interaction 
as a mass-spring-damper system. The indirect relationship is a consequence of force sign 
influence on control law, the objective is to adapt the manipulator dynamic behavior in 
contact with the environment and not to fulfill a position and/or force trajectory. This way, 
an explicit force feedback doesn't exist in system, because, this signal just supplies the 
system impedance in contact with a surface. 
Therefore, the fundamental philosophy of impedance control, in agreement with (Hogan, 
1985), is that the control system regulates the manipulator impedance, that is defined by 
relationship between the speed and applied force, Fig. 7 (Zeng & Hemami, 1997). The 
formulation of this control strategy is presented to follow, in the equation 1. 
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Fig. 7. Impedance force control. 
 

 
 

(1) 

Where,   is the mass matrix,  is the damping matrix,  is the stiffness matrix and 

is the interaction force matrix. 
Equally to position control for inverse dynamics, where the impedance control is based, the 
integral knowledge of manipulator dynamics is admitted. In this way, the accurate 
knowledge of object elasticity characteristics or contact environment is not necessary in this 
control strategy (Yoshikawa, 2000). 

 
5.5 Results 
The implemented control strategy uses force feedback only to regulate the manipulator 
impedance, assuming that the manipulator is in contact with operation surface. In this way, 
when some force be detected the control law only will regulate the impedance to establish 
the system. 
The application used to validate the developed controller for interaction tasks is based in 
this characteristic of the impedance control, however, in this case, the end-effector isn't in 
contact with the surface. Therefore, the manipulator is immobile, admitting to be in wanted 
impedance profile, and when detects external force controls the system impedance (Fig. 8). 
The joint speed profiles generated in experiments are present in Fig. 9. 
 

 
Fig. 8. Interface architecture for interaction tasks. 

 
Fig. 9. Force and joint velocities profile of the impedance control. 
 
The system validation experiment accomplished consists in a parallel manipulation on robot 
workspace limits. The force profiles, detected by JR3 force and moments sensor, only adapt 
manipulator dynamic behaviour with environment dynamic characteristics. In this way, a 
profile of force control is used to drive the joints velocity behaviour to a desired impedance 
profile. 

 
6. Conclusion 
 

In this work was considered a new reference model for a control system functional 
architecture applied to open-architecture robot controllers. The proposed approach was 
applied for integrally developing of a five-layer based open-architecture robotic controller 
considering interaction tasks. The architecture uses parallel and distributed processing 
techniques and circumvents the necessity of compliance in system, allowing a real-time 
processing of the application and the total information control. 
Old manipulator retrofitting considers the problem of including controllers with new 
functionalities as force control. The main characteristics of these systems are high-stiffness 
and position control. These characteristics restrict response time of the system. Therefore, an 
open-architecture system can be projected to operate in real-time. 
The proposed reference model for open-architecture robot controllers was experimentally 
validated including the implementation of an indirect force control strategy in the robot 
controller. Practical tests have shown the interest of the proposed architecture in terms of 
controller flexibility, costs and maintenance and high capacity of processing. 
This reference model clarifies the concept of robot controller and explains the internal 
modules that compose robot control unit. The system decomposition makes possible the 
optimization of internal modules for a specific task, e.g., interaction tasks. In this way, it is 
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possible to include new functionalities to the system, e.g., other feedback signals, new 
actuators or dedicated processors for a specific problem, e.g., resolution of redundancy or 
inverse kinematics. 
In the actual stage, the researchers have been focused on the theoretical aspects of the 
problem. Further works will consider the model validation and experimental applications. 
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